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Abstract The India Meteorological Department

(IMD) has been issuing long-range forecasts (LRF)

based on statistical methods for the southwest mon-

soon rainfall over India (ISMR) for more than 100

years. Many statistical and dynamical models including

the operational models of IMD failed to predict the

recent deficient monsoon years of 2002 and 2004. In

this paper, we report the improved results of new

experimental statistical models developed for LRF of

southwest monsoon seasonal (June–September) rain-

fall. These models were developed to facilitate the

IMD’s present two-stage operational forecast strategy.

Models based on the ensemble multiple linear regres-

sion (EMR) and projection pursuit regression (PPR)

techniques were developed to forecast the ISMR.

These models used new methods of predictor selection

and model development. After carrying out a detailed

analysis of various global climate data sets; two pre-

dictor sets, each consisting of six predictors were

selected. Our model performance was evaluated for

the period from 1981 to 2004 by sliding the model

training period with a window length of 23 years. The

new models showed better performance in their hind-

cast, compared to the model based on climatology. The

Heidke scores for the three category forecasts during

the verification period by the first stage models based

on EMR and PPR methods were 0.5 and 0.44,

respectively, and those of June models were 0.63 and

0.38, respectively. Root mean square error of these

models during the verification period (1981–2004)

varied between 4.56 and 6.75% from long period

average (LPA) as against 10.0% from the LPA of the

model based on climatology alone. These models were

able to provide correct forecasts of the recent two

deficient monsoon rainfall events (2002 and 2004). The

experimental forecasts for the 2005 southwest mon-

soon season based on these models were also found to

be accurate.

1 Introduction

In an agricultural country like India, the success or

failure of the crops and water scarcity in any year is

always viewed with the greatest concern. A major

portion of annual rainfall over India is received during

the southwest monsoon season (June–September).

Regional rainfall has large year-to-year fluctuations.

However, the southwest monsoon rainfall over the

country as a whole is more or less stable. The mean

seasonal rainfall (based on 1941–1990 data) averaged

over the country as a whole is 89 cm with a coefficient

of variation of about 10%. However, even this small

fluctuation in the seasonal rainfall can have devastating

impacts on agricultural sector. Even though, the con-

tribution from the agricultural sector to the national

income has decreased over the years (less than 30%

now), the performance of the agricultural sector is still

very critical to India’s economy. The deficient monsoon

rainfall during the recent 2 years (2002 and 2004) has
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had an adverse impact on India’s economy. Therefore,

long-range forecasting (LRF) of southwest monsoon

rainfall is a high priority in India. An accurate forecast

of monsoon performance averaged over the country as

a whole is also very useful for better macro level plan-

ning of finance, power and water resources.

The India Meteorological Department (IMD) has

been issuing LRF of the southwest monsoon rainfall

since 1886. It was, however the extensive and pio-

neering work of Gilbert Walker (1923, 1924), that led

to the development of the first objective models based

on statistical correlations between monsoon rainfall

and antecedent global atmosphere, land and ocean

parameters. Since then, IMD’s operational LRF sys-

tem has undergone changes in its approach and scope

from time to time. There are many reviews on the LRF

of Indian southwest monsoon rainfall (ISMR) (Nor-

mand 1953; Jagannathan 1960; Thapliyal and Kulsh-

reshtha 1992; Hastenrath 1995; Krishna Kumar et al.

1995; Rajeevan 2001; Gadgil et al. 2005). In a very

recent study, Gadgil et al. (2005) addressed the major

problems of the statistical and dynamical methods for

LRF of monsoon rainfall in view of the recent forecast

failures in 2002 and 2004. Their analysis revealed that

IMD’s operational forecast skill based on statistical

methods has not improved over seven decades despite

continued changes in the operational models.

For the LRF of the ISMR, three main approaches

are used. The first is the statistical method, which uses

the historical relationship between the ISMR and glo-

bal atmosphere–ocean parameters (Walker 1914, 1923;

Thapliyal 1982; Gowariker et al. 1989, 1991; Navone

and Ceccatto 1995; Singh and Pai 1996; Guhathakurta

et al. 1999; Rajeevan et al. 2000, 2004, 2005; Delsole

and Shukla 2002; Sahai et al. 2003; Pai and Rajeevan

2006). The second approach is the empirical method

based on a time series analysis. This method uses only

the time series of past rainfall data (Goswami and

Srividya 1996; Iyengar and Raghukanth 2004; Kishta-

wal et al. 2003) and do not use any predictors. The

third approach is based on the dynamical method,

which uses general circulation models of the atmo-

sphere and oceans to simulate the summer monsoon

circulation and associated rainfall. In spite of its

inherent problems, at present, statistical models per-

form better than the dynamical models in the seasonal

forecasting of ISMR. The dynamical models have not

shown the required skill to accurately simulate the

salient features of the mean monsoon and its inter-

annual variability (Latif et al. 1994; Gadgil and Sajani

1998; Krishnamurti et al. 2000; Kang et al. 2002; Gadgil

et al. 2005; Krishna Kumar et al. 2005; Wang et al.

2005).

During the period of 1988–2002, IMD’s operational

forecasts were based on the 16-parameter power

regression and parametric models (Gowariker et al.

1989, 1991). The forecasts issued during this period

were qualitatively correct. However, the mean forecast

error during this period was more than the mean error

of the forecasts based on climatology alone. This model

failed to predict the severe drought of 2002. Following

the failure of forecast in 2002, a critical evaluation of

the 16-parameter power regression and parametric

models was made and in 2003, two new models (8 and

10 parameter models) were introduced for the opera-

tional work. Further a two-stage forecasting strategy

was also adopted with the provision for a forecast up-

date by end of June/first week of July (Rajeevan et al.

2004). According to this new strategy, IMD’s opera-

tional forecasts for the seasonal ISMR for the country

as whole are issued in two stages. The first stage forecast

is issued in mid April and an update or second stage

forecast is issued by the end of June. While the 2003 and

2005 operational forecasts for the southwest monsoon

rainfall based on these new models were accurate, the

forecast for the 2004 monsoon came up false.

Following the failure of the operational forecast in

2004, two major issues were critically analyzed; (a) a

re-visit of the identification of predictors, which have

physical relationships with monsoon rainfall in view its

weakening of relationship with ENSO (Krishna Kumar

et al. 1999) and (b) a critical look at the development

of models in terms of the optimal number of predictors

and the model development period, etc. We also fur-

ther explored new statistical methods in the hope of

improving model performance.

In this paper, we discuss the details of the new

experimental models for the LRF of ISMR. These new

statistical models are based on the following tech-

niques:

(1) Ensemble multiple linear regression (EMR)

(2) Projection pursuit regression (PPR)

In Sect. 2, we discuss the data used for this study and

in Sect. 3, we discuss the details of the predictors used

in the new experimental models. Various methods used

for model development and model forecast verification

are discussed in Sect. 4. In Sect. 5, results from the new

forecast models are discussed. Finally, the conclusions

are presented in Sect. 6.

2 Data used

The southwest monsoon season (June–September)

rainfall over the country as a whole (ISMR) is
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calculated as the area weighted average of the seasonal

monsoon rainfall data of all 36 meteorological subdi-

visions in India. The long period average (LPA) (1941–

1990) of the seasonal rainfall is 89 cm and the coeffi-

cient of variation is about 10%. The ISMR was ex-

pressed as the percentage departure from the LPA. We

used ISMR series for the period from 1958 to 2005.

The ISMR series used in the study is different from

another widely used ISMR series of Parthasarathy

et al. (1995), which used a fixed a network of 306 ra-

ingauge stations over the plains of India. IMD ISMR

series of IMD was constructed from a network of

around 2,000 raingauges distributed all over India

including the hilly regions. However, the correlation

coefficient (CC) between these two ISMR time series

for the period of 1958–2003 is highly significant (0.98).

In terms of identifying predictors, we have used

monthly data sets of various parameters such as sea

surface temperature (SST), mean sea level pressure,

zonal wind at 850 hPa and station level surface air

temperatures. The SST data set used was the monthly

NOAA Extended Reconstructed Global Sea Surface

Temperature version 2 (ERSST.v2) data at 2�·2�, lat-

itude · longitude grid (Smith and Reynolds 2004).

These data were obtained from the National Climatic

Data Center (NCDC), Asheville, NC, USA (http://

www.ncdc.noaa.gov/oa/climate/research/sst/sst.html/).

The monthly surface sea level pressure and 850 hPa

zonal wind data of NCEP/NCAR reanalysis (Kalnay

et al. 1996) were obtained from the NOAA-CIRES

Climate Diagnostics Center, Boulder, CO, USA

(http://www.cdc.noaa.gov/). The spatial resolution of

these data is 2.5�·2.5� latitude · longitude.

In addition, we have used the monthly mean warm

water volume (WWV) data over the Pacific (Meinen

and McPhaden 2000; McPhaden 2003; Rajeevan and

McPhaden 2004). The WWV data available on real

time at http://www.pmel.noaa.gov/tao/elnino/wwv/

were based on the upper ocean temperature field

analysis (McPhaden et al. 1998). Another data that we

used were the monthly land surface air temperatures of

five stations from Europe obtained from the publica-

tion ‘World Climatic Data for the world’ published by

the NCDC. These stations are: Orland, Oslo/Gender-

mon, Ostursund/Froson, Karlstad and De Bilt. We also

used the monthly mean Nino-3.4 index data obtained

from the Climate Prediction Centre, NOAA (http://

www.cpc.ncep.noaa.gov/). All the above monthly data

were used for the period of 1958–2006.

3 Details of predictors

The main aim of the development of the new forecast

models for the LRF of ISMR was to support IMD’s

present two-stage forecasting system, which demands

two sets of models. The first set is useful for the first

stage forecast issued in mid April and the second set

for the second stage or update forecast issued by the

end of June.

For the first stage forecast models, a predictor set

requiring data up to March (SET-I) was used and for

the second stage forecast models, another predictor set

requiring data up to May (SET-II) was used. The list of

the predictors in the SET-I and SET-II is given in

Tables 1 and 2, respectively. There are nine predictors

in total. Figure 1 shows the geographical regions of

these predictors. Each of these predictor sets contains

six predictors each. The first three predictors are

common in both the data sets. In the SET-II, the last

three predictors require data up to May. As seen in

Tables 1 and 2, all the predictors have significant

(>5% is a significant level) correlations with the ISMR.

The correlations were computed for the period from

1958 to 2000. The SST predictors were derived as the

simple arithmetic average of the monthly ERSST.v2

anomalies over the respective geographical region. The

time periods used for the averaging are given in the

third column of Tables 1 and 2. The pressure and wind

predictors were similarly derived from the NCEP

Table 1 Details of predictors used for the first stage forecast (SET-I)

No. Parameter Period Spatial domain CC with ISMR
(1958–2000)

A1 North Atlantic SST anomaly December + January 20N–30N, 100W–80W –0.45**
A2 Equatorial SE Indian Ocean SST anomaly February + March 20S–10S, 100E–120E 0.52**
A3 East Asia surface pressure anomaly February + March 35N–45N, 120E–130E 0.36*
A4 Europe land surface air temperature anomaly January Five stations 0.42**
A5 Northwest Europe surface pressure anomaly tendency DJF(0) – SON (–1) 65N–75N, 20E–40E –0.40**
A6 WWV anomaly February + March 5S–5N, 120E–80W –0.32*

*Significant at and above 5% level

**Significant at and above 1% level
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reanalysis data. The land surface air temperature

anomaly over the Northwest Europe was computed as

the average of surface air temperature anomalies of the

five land stations from Europe. The seasonal tendency

in the Nino-3.4 anomaly index was computed by sub-

tracting monthly anomalies averaged over the winter

season (DJF) from those averaged over the spring

season MAM (March–May). The WWV anomaly over

the Pacific (February + March) was derived from the

monthly averages of WWV computed between 5�N

and 5�S integrated across the Pacific basin including all

ocean areas between 120�E and 80�W (Rajeevan and

McPhaden 2004). The lower boundary for this inte-

gration is the depth of the 20�C isotherm, which is lo-

cated in the middle of the upper thermocline. All

anomalies were computed using the climatological

base period of 1971–2000. One of the SST predictors

(southeast Indian Ocean) common in both the pre-

dictor sets showed a significant warming trend during

the data period. Hence, the time series of this predictor

only was de-trended by removing the linear trend fitted

for the period of 1958–2000 from the time series.

Figure 2 shows the 21-year moving CC between

ISMR and the nine predictors selected for the model

development. The horizontal dashed lines represent

the CC (±0.43) significant at a 5% level. As seen in

Fig. 2, the relationship of most of the predictors with

ISMR was stable (CC near or above 5% significant

level) during the entire period particularly during the

recent years. A brief discussion on the physical linkage

between the predictors and ISMR is given in the re-

search report by Rajeevan et al. (2005). There are

significant inter-correlations among some of the pre-

dictors. This can be seen in Table 3, which depicts the

lower triangle of the inter-correlation matrix of all the

nine predictors used in both the SET-I and SET-II

together. CC values significant at and above 5% level

are shown by bold letters. Before using these predic-

tors in the models, all the predictor time series were

standardized using the base period data of 1971–2000.

4 Methodology

4.1 EMR models

The EMR models for the first and second stage

forecasts (EMR-I and EMR-II, respectively) were

Table 2 Details of predictors used for the second stage forecast (SET-II)

No. Parameter Period Spatial domain CC with ISMR
(1958–2000)

J1 North Atlantic SST anomaly December ++ January 20N–30N, 100W–80W –0.45**
J2 Equatorial SE Indian Ocean SST anomaly February ++ March 20S–10S, 100E–120E 0.52**
J3 East Asia surface pressure anomaly February ++ March 35N–45N, 120E–130E 0.36*
J4 Nino-3.4 SST anomaly tendency MAM(0) – DJF(0) 5S–5N, 170W–120W –0.46**
J5 North Atlantic surface pressure anomaly May 35N–45N, 30W–10W –0.42**
J6 North Central Pacific zonal wind anomaly at 850 hPa May 5N–15N, 180E–150W –0.55**

*Significant at and above 5% level

**Significant at and above 1% level

Fig. 1 Geographical
locations of the nine
predictors listed in
Tables 1 and 2
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developed using the predictor sets of SET-I and SET-

II, respectively, with six predictors. On the way to the

development of the EMR models we have addressed

the following two important issues; (a) what is the

optimal length of training period for a given model?

(b) Given the six predictors, how does one select a set

of best models (members of ensemble) out of all

possible multiple regression (MR) models?

Kung and Sharif (1982) and McBride and Nicholls

(1983) have highlighted the need for regular training or

updating of the forecast models with the latest data for

better forecasts. The necessity of updating model

equations is due to the fact that the time series of

meteorological parameters are statistically nonsta-

tionary. The instability of the meteorological series

suggests that the use of all available data for the

development of forecast equation might not automat-

ically improve its performance. A near optimal length

of training period has to be identified (Nicholls 1984).

Therefore, our first aim was to find out the optimal

length of training period for all the possible MR

models constructed using each of the predictor sets

(SET-I and SET-II).

For ‘p’ standardized predictors for ‘n’ years, the MR

model equation can be written as

Yðz1; z2; z3; . . . ; zpÞ ¼
Xp

i¼1

aTZ ð1Þ

where Y is the (n · 1) predictand (ISMR) matrix, aT is

the (p · 1) row matrix of regression coefficients, and Z

is the (n · p) matrix of ‘p’ predictor variables.

If there are ‘p’ predictors, it is possible to build

(2p – 1) MR models relating the predictors and pre-

dictand by making use of all possible combinations of

the predictors. Using six predictors, it is possible to

build 63 (=26 – 1) MR models. To find out the optimal

length of training period, the predictive skill of each of

the all possible models during a fixed common period

1981–2004 was examined. For this, we have used the

sliding model training period technique for all the

possible lengths of training period. For example, for

the case of training period of 15 years length, data for

1971–1985 were used for predicting rainfall of 1986 and

data for 1972–1986 were used for predicting the rainfall

of 1987 and so on. We have used the root mean square
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Fig. 2 The 21 years moving
correlations between the
predictors listed in
Tables 1 and 2 and ISMR.
The horizontal dashed lines
represent the correlation
significant at 95% level

Table 3 Inter-correlation among the predictors used in SET-I and SET-II

A1/J1 A2/J2 A3/J3 A4 A5 A6 J4 J5 J6

A1/J1 1.00
A2/J2 0.02 1.00
A3/J3 –0.29 0.18 1.00
A4 –0.04 0.16 0.23 1.00
A5 0.05 –0.06 0.04 –0.69 1.00
A6 0.22 –0.47 –0.07 –0.06 –0.01 1.00
J4 0.24 –0.53 –0.18 –0.14 –0.03 0.61 1.00
J5 0.22 –0.06 –0.17 –0.39 0.46 0.21 0.01 1.00
J6 0.08 –0.47 –0.04 –0.20 0.06 0.17 0.12 0.03 1.00

Period: 1958–2000. CC values significant at and above 5% level are shown in bold letters
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error (RMSE) of the forecasts for the period

1981–2004 as the measures of predictive skill (equation

for the computation of RMSE is given in Sect. 4.3). For

each of the possible models, RMSE values were com-

puted for different lengths of training period. For each

model, the optimal length of training period is taken as

that length of training period for which the RMSE of

forecasts for the period 1981–2004 is the lowest.

Figure 3 shows the scatter diagram of RMSE of all the

possible models (63 models) derived from SET-I plotted

against different model training period lengths (from 8 to

28 years). The solid line shows the mean value of the

RMSE obtained by averaging across all the 63 models. In

Fig. 3, it is seen that the RMSE of the models decreases

with increase in the length of training period and reaches

the minimum value around 23 years and then again in-

creases with increase in the length of training period. A

similar analysis with all the possible MR models derived

from the SET-II (not shown) also showed that the

optimal length of training period is around 23 years.

Now, we discuss the methodology for selecting a set

of best models out of all possible models. When a set of

‘p’ predictors are available, the typical approach used

in the model development is to use a selection exercise

leading to a single ‘best’ model and then make infer-

ences assuming that the selected model is the true

model. The best model may be one that explains the

highest variance during the development period or one

that having the highest predictive skill during an

independent data period. The selection of the best

subset of predictors or optimal number of predictors in

the statistical models is discussed by many researchers

(Hastenrath and Greischar 1993; Delsole and Shukla

2002). For monsoon forecast, these studies suggested

that three or four predictors are adequate for

developing a statistical model with useful skill. Delsole

and Shukla (2002) discussed the major issue of over-

fitting in the IMD’s previous operational model in

which as many as 16 predictors were used for the

model development (Gowariker et al. 1989, 1991).

They have recommended use of a small number of

predictors for model development.

However, the use of a single best model ignores a

major component of uncertainty, namely uncertainty

about the model itself (Draper 1995; Raftery 1996)

which results in the underestimation of the uncertain-

ties about the model inferences. A solution to this

problem is to average over all possible models when

making the predictand inferences (Madigan and Raf-

tery 1994). Alternatively, a lesser number of models

can be selected from all possible models for averaging

to obtain inferences about the predictand that are very

close to the inferences which would have been

achieved by averaging over all possible models. Raf-

tery et al. (1997) proposed two methods as alternate

approaches of Bayesian model averaging of linear

regressions. The first method is an ad hoc procedure

called ‘Occam’s Window’, which indicates a small set

of models over which a model average can be com-

puted. The second method is Markov Chain Monte

Carlo approach which directly approximates the exact

solution.

In this paper, best models for ensemble average

were obtained in two steps. In the first step, models

were ranked based on the objective criteria of likeli-

hood function or generalized cross-validation (GCV)

function (Singhrattna et al. 2005). GCV can be com-

puted as given below,
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Fig. 3 Scatter plot of RMSE
of the forecasts by each of all
possible models derived from
SET-I for training period of
different lengths (from 8 to 28
years). The solid curve
connects the average RMSE
of all the possible models.
The RMSE was computed for
the period 1981–2004
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GCV ¼
P
ðY 0 � YÞ2=n

1� p=nð Þ2
ð2Þ

where Y¢ is the model forecast obtained using sliding

training period method with an optimal window period

of length 23 years. GCV is nearly equal to the square of

the RMSE with a correction for the number of pre-

dictors used in the model. GCV for the period 1981–

2004 was calculated for all the possible MR models and

the models were ranked in the ascending order of GCV

values. The model with lowest value of GCV was

ranked first and model with highest value of GCV was

ranked last (63rd). Figure 4 shows the scatter plot of

GCV values against the rank of the model. The light

(dark)-shaded markers correspond to models derived

from SET-I (SET-II). It is seen that, models tend to

cluster in groups with some breaks. This is more evi-

dent for the model with SET-II parameters. In the case

of models derived from SET-I, the first break is seen

after the cluster of first four models. In case of the

models derived from SET-II, the first break is seen

only after the cluster of first 13 models.

In the second step, ensemble average of forecasts

from the models ranked based on GCV values was

computed for the period 1981–2004 by using first 1

model, first 2 models, first 3 models and so on up to all

the possible 63 models in the rank list as the ensemble

members. The ensemble average for each year of the

independent period 1981–2004 was computed as the

weighted average of the forecasts from the individual

ensemble members. The weighted average is calcu-

lated as

Y 0E ¼
Pi¼k

i¼1 wiY
0
iPi¼k

i¼1 wi

ð3Þ

where ‘Y¢E’ is the ensemble forecast for a given year,

‘Y¢i’ is the corresponding forecast by ith of the ‘k’

ensemble member models and wi’s are the weights.

Here, we have used the adjusted R of the model during

the training period as the weights. Adjusted R is the

multiple CC (R) adjusted for the number of predictors

used in the model. The relation between R and ad-

justed R is given as: (adjusted R)2 = R2 - p(1- R2)/(n-p-

1), where ‘n’ is the length of the training period (i.e., 23

years) and ‘p’ is the number of predictors used in the

model. The weights of each model can vary with the

year for which forecast is made as we have used a

sliding training period.

Figure 5 shows the RMSE of the ensemble average

of forecasts plotted against the ensemble size (number

of models in the ensemble). The solid (dotted) line

corresponds to models derived from SET-I (SET-II).

As seen in Fig. 5, the RMSE (6.48% of LPA) is the

highest for the two-member ensemble and decreases to

its lowest value (5.47% of LPA) for the four-member

ensemble. Further increase in the ensemble size in-

creases the RMSE of ensemble model. This suggests a

natural break point near ensemble size of 4. Similar

kind of inference was obtained in Fig. 4. Thus, we have

considered these four MR models for building the

ensemble model, EMR-I.

Similarly in Fig. 5, as revealed by the dotted line,

one-member ensemble has the highest RMSE (5.66%

of LPA). The RMSE shows a general decrease in
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RMSE with increase in the ensemble size to reach its

lowest value (4.56% of LPA) for the 13-member

ensemble. Further increase in the ensemble size shows

increase in the RMSE. Thus, in the case of models

derived from SET-II, the natural break point is

reached at ensemble size of 13 (as was the case de-

picted by the dark-shaded makers in Fig. 4). Therefore,

these 13 MR models were selected to build the

ensemble model, EMR-II. Details of the selected

models for building EMR are discussed in Sect. 5.

4.2 PPR models

We also considered another statistical technique to

develop a model for seasonal forecasts. The purpose

was to develop an independent nonlinear model, with a

different methodology.

The projection pursuit (PP) was first proposed by

Friedman and Tukey (1974). The basis of the PP

technique is the linear projection of the data. However,

it attempts to identify the nonlinear structures within

the projections. The name ‘projection pursuit’ is asso-

ciated to the fact that the technique automatically

pursues the most ‘interesting’ projections. Huber

(1985) proposed PP as an alternative to the traditional

principal component technique to reduce a high-

dimensional data set into a lower-dimensional one.

One such application of this method was the PPR. This

new method of nonparametric MR was proposed by

Friedman and Stuetzle (1981). Chan et al. (1998)

demonstrated that PPR is superior to traditional MR

analysis, because the PPR is capable of identifying

nonlinear relationships between the predictand and the

predictors. Chan and Shi (1999) used this technique to

develop models for forecasting of summer monsoon

rainfall over south China and obtained skillful results.

The PPR is based on the iterative estimation of linear

combinations of the original predictor variables and

the corresponding smooth functions that describe the

relation between the projection and the response.

The PPR has the form

Yðz1; z2; z3; . . . ; zpÞ ¼
XM

m¼1

fmðaT
mZÞ ð4Þ

where Z is the (n · p) matrix of ‘p’ predictor variables

and am
T is the (p·1) row vector. The projection am

T Z
gives the linear combination of the predictor variables.

The smooth fm applied on this projection are the sin-

gle-valued (ridge) functions of a single variable. M is

the total number of projections and smooths needed to

be able to describe variation in a response variable.

The vector am
T is fitted by nonlinear fitting such as

Gauss–Newton and the function fm is fitted by the

curve-fitting such as splines. Friedman’s initial imple-

mentation of PPR used super-smoother (Friedman

1984) for fitting fm. Roosen and Hastie (1994) used

smoothing splines for the same purpose.

The PPR is identical to a three-layer perceptron or

feed forward neural network (Bishop 1995). In neural

network, the function fm is called activation functions.

The only difference is that in neural networks the

function fm is the same for all the nodes, while in PPR

it can differ for each of the M projections; its format is

more flexible and data-driven.

An iterative algorithm defines the exact fitting of

model terms. The fitting procedure alternates between

an estimation of the vector am
T and an estimation of
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function fm. The function fm is continuous in the model,

but in the algorithm only its values at the data points

are used. The fraction of unexplained variance that is

explained by adding the term fm(x) can be used as a

criterion of fit (figure of merit):

IðamÞ ¼ 1�
Xn

i¼1

ðri � fmðaT
mZÞÞ2

,
Xn

i¼1

r2
i ð5Þ

where ri is the residual. The M projections and smooths

are produced in a stepwise procedure. The iteration

process is initiated by setting ri = Yi (assuming that the

response is centered:
P

Yi ¼ 0). The vector am
T and the

corresponding smooth fm(x) that maximize I(am) are

selected and the process is terminated when I(am) is

smaller than a user specified threshold. As long as

I(am) is not smaller than a threshold value, the resid-

uals are calculated as ri=-Yi – fm(am
T Z). These residu-

als are then used as the response values in the next step

of the stepwise procedure.

In this study, we have used the R software (http://

www.cran.r-project.org/) MASS library to derive the

PPR model.

Two PPR models were developed, one for the first

stage forecasts (PPR-I) in April using the SET-I data

and second for the second stage forecast (PPR-II) in

June using the SET-II data. In this study, M was set

to 2 (representing two projections, the maximum

being p, which is the number of potential projec-

tions) as the inclusion of more projections did not

further increase the variance explained. Thus the

predictand was expressed as the sum of the functions

of first two projections. The independent forecasts

were produced by sliding the training period with an

optimal window period of length 23 years as done in

the EMR models.

4.3 Verification of the model forecasts

The model forecasts during the period 1981–2004 were

verified using simple model statistics such as CC be-

tween actual and predicted ISMR (R), bias in the

model forecasts (BIAS) and RMSE. They are calcu-

lated in the following way.

R ¼
P

Y � �Y 0
� �

Y � �Y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

Y � �Y 0
� �2P

Y � �Y
� �2

r ð6Þ

BIAS ¼
P

Y 0 � Yð Þ
n

ð7Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
Y 0 � Yð Þ2

n

s

ð8Þ

where �Y and �Y 0 are the sample averages of the Y and

Y¢, respectively.

Another method of verification used in this study

was a three-way category forecast verification. In this

verification method, the forecasts were made into three

pre-defined rainfall categories of equal probabilities

(33.3%). In this case, there were 24 years (1981–2004)

for verification and therefore the rainfall categories

were so formed that each of the categories contained 8

years. The three categories used were (a) below normal

(<-7.45% from LPA), (b) normal (-7.45–1.45% from

LPA) and (c) above normal (>1.45% from LPA).

The verification statistics used for the category

forecasts were (a) hit score (HS), (b) Heidke skill score

(HSS), (c) probability of detection (POD) and (d) false

alarm rate (FAR). HS is the proportion of the correct

forecasts and is computed as the ratio of forecasts in the

correct category to the total number of forecasts. The

HSS is the HS adjusted to account the proportion of

forecasts that would have been correct by chance in the

absence of skill and is computed as [(3/2) · HS] - 1/2.

For a good model, the HSS should be more than 0.33

(i.e., 1/3rd of the forecasts are categorically correct).

The POD explains the goodness of the model to detect

a pre-defined category. POD for below normal category

is the probability of the model forecasting below nor-

mal when below normal rainfall was observed. Simi-

larly, we can also define POD for the above normal

category. FAR for a forecast category is the measured

as the percentage of the total forecasts in that category

which were opposite to the observed category. FAR for

a below (above) normal forecast is the percentage of

the forecasts made in that category for which observed

category was above (below) normal.

5 Results and discussions

5.1 EMR models

Tables 4 and 5 show the details of the ensemble

members (MR models with least GCV) used to con-

struct the ensemble models EMR-I and EMR-II,

respectively. In Table 4, there are four models. It can

be seen that one predictor (East Asia surface pressure

anomaly) is common in all these four models and that

only five out of six predictors of SET-I have been used

to derive these models. Northwest Europe surface
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pressure anomaly tendency has not been used in any of

the four models. In Table 5, two predictors (East Asia

surface pressure anomaly and North Atlantic surface

pressure anomaly) are common in all the selected 13

models. The forecast of EMR-I was computed as the

weighted average of the forecasts of the four models

given in Table 4 and that of EMR-II was computed as

the weighted average of the forecasts of 13 models

given in Table 5.

The forecasts of EMR-I model are shown in Fig. 6a,

along with the forecasts of its ensemble members (four

MR models) used for building the EMR model. Simi-

larly Fig. 6b shows the forecasts of EMR-II model

along with the forecasts of its 13 ensemble members.

As seen in Fig. 6a, during all the extreme years like

1982, 1983, 1986, 1987, 2002 and 2004, both the indi-

vidual forecasts as well as their ensemble average

showed the same sign as that of the actual ISMR. Even

the magnitudes were mostly closer to the actual values.

The advantage of the ensemble forecast was more

evident during some of the extreme years like 1983,

1987, 2004, etc. In case of 1983, the ensemble member

forecasts ranged from 6.14 to 15.7% from LPA,

whereas the ensemble average was 12.02%, which was

closer to the actual value. For 1987, the ensemble

member forecasts ranged from –9.55 to –19.65% from

LPA, whereas the ensemble average was –13.72%,

which was closer to the actual value. As such the

ensemble method almost provides practically better

forecasts than the individual ensemble members (MR

models). However, there are years like 1981, 1985,

1992 and 1997 when the sign of the ensemble average

was opposite to that of the actual average. During all

these years (except 1997), the actual values of ISMR

were on negative side and the forecasts were on posi-

tive side, indicating a positive bias (see Table 6) in the

forecasts using the EMR-I model.

As seen in Fig. 6b, EMR-II forecasts and most of

the ensemble member forecasts showed the same sign

as that of the actual ISMR during most of the years.

The magnitude was also closer to actual values. It can

be noted that the bias of the EMR-II was very small

(see Table 6). However, during 5 years (1981, 1985,

1989, 1997 and 2003) the sign of the EMR-II forecasts

was opposite to that of the actual ISMR. The forecast

was an over-estimate during 2 years (1981 and 1985)

and an under-estimate during the remaining years.

Table 6 shows the model forecast verification sta-

tistics of EMR-I and EMR-II models computed for the

period 1981–2004. Though the value of R for both the

ensemble models was nearly the same, the RMSE of

the EMR-II (4.56% from LPA) was appreciably less

than that of EMR-I (5.47% from LPA). This indicates

that the performance of the EMR-II during the veri-

fication period was better than that of EMR-I model.

The RMSE of forecasts for the same period based on

climatology alone was 10% from LPA, which is almost

double the RMSE of the ensemble models. The cli-

matological forecast for a given year was obtained as

the average of ISMR during the preceding 23 years to

the given year. Thus, the performance of both the

EMR models was far better than that of the model

based on climatology alone. This is also reflected in the

three category forecast by the EMR models. As seen in

Table 6, the HS and HSS of the EMR-II (75% and

0.63) were higher than that of EMR-I (67% and 0.5).

Both the EMR models did not produce any false

alarms in both the below normal and above normal

categories. Similarly for both the models, the POD the

below normal category was 100%. The POD above

normal category was 77% for EMR-I and 82% for

EMR-II.

5.2 PPR Models

As in the case of the EMR model, 23 years were used

as the optimal length of training period and the sliding

training period technique was used to produce inde-

pendent forecasts. During each of the 23 years model

training periods, its was observed that the relationship

between the first projection predictor X1 – a1
T and

ISMR was linear and that between the residual

r(z) = Y – f1(a1
TZ) obtained after removing the con-

tribution of X1 in the ISMR and the second projection

predictor X2 = a2
TZ was nonlinear. These two rela-

tionships for the case of the model trained (using the

Table 4 Details of the four models selected from all possible MR models constructed using the predictors of SET-I for building the
EMR-I model

Regression model No. of predictors Predictors Model skill (1981–2004)

GCV (% from LPA)*2 CC (R)

Model 1 4 A1, A2, A3 and A6 40.55 0.79
Model 2 3 A1, A2 and A3 43.93 0.78
Model 3 4 A2, A3, A4 and A6 44.83 0.82
Model 4 3 A3, A4 and A6 46.58 0.76
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Fig. 6 a Performance of the
forecasts of EMR-I model
and its four ensemble
members for the period
(1981–2004) computed by
sliding optimal training
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markers. b Same as a, but for
performance of forecasts of
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Table 5 Details of the ensemble of 13 MR models selected for building EMR-II

Regression model No. of predictors Predictors Model skill (1981–2004)

GCV (% from LPA)*2 CC (R)

Model 1 5 J1, J2, J3, J5 and J6 32.04 0.84
Model 2 4 J2, J3, J5 and J6 32.72 0.82
Model 3 6 J1, J2, J3, J4, J5 and J6 33.44 0.83
Model 4 4 J3, J4, J5 and J6 34.21 0.82
Model 5 5 J1, J3, J4, J5 and J6 34.88 0.81
Model 6 5 J2, J3, J4, J5 and J6 35.54 0.81
Model 7 4 J1, J3, J5 and J6 36.08 0.79
Model 8 3 J3, J5 and J6 36.31 0.79
Model 9 5 J1, J2, J3, J4 and J5 36.84 0.82
Model 10 4 J1, J2, J3 and J5 37.41 0.83
Model 11 3 J3, J4 and J5 37.70 0.77
Model 12 4 J2, J3, J4 and J5 38.28 0.78
Model 13 3 J2, J3 and J5 39.85 0.78

The models were selected from all possible MR models constructed using predictors of SET-II
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period of 1968–1980) for forecasting ISMR in 1981 are

depicted in Fig. 7a, b. Thus, the first two most inter-

esting projections of the predictor set represented the

linear and nonlinear relationships, respectively, be-

tween the ISMR and the predictors.

The year-to-year performance of the PPR models is

given in Fig. 8. As seen, both the models were suc-

cessful in predicting the ISMR during most of the years

and particularly during the extreme years. However,

the PPR-I model failed to predict the sign of ISMR

correctly in four normal monsoon years (1981, 1992,

1996 and 1999). Similarly, the PPR-II model failed to

correctly predict the sign of ISMR in three normal

monsoon years (1985, 1990 and 1996). During the year

1993 (ISMR=0), the sign of the forecasts from both

models was negative. On the other hand, during 1995

(ISMR=0), the sign of the forecasts was positive. Like

the EMR models, the forecasts by the PPR models

were all correct during the recent years.

The model verification statistics of the PPR models

given in Table 6 shows that the RMSEs of the models

PPR-I and PPR-II for the period of 1981–2004 were

6.75 and 6.42% LPA, respectively. They were smaller

than that of the forecasts based on climatology alone

but were higher than that of the EMR models. The

HSS of PPR-I and PPR-II models (0.44 and 0.38,

respectively) were smaller than that of the EMR

models. The FARs for below normal category by

PPR-I and II models were 0 and 11%. But both of

these models did not cause any false alarm for the

above normal category. Probability for detecting

below normal and above normal categories by PPR-I

was, respectively, 86 and 67%. Probability for

detecting for both the cases by the PPR-II model was

around 60%.

6 Summary and conclusions

Because of the inherent problems in the statistical

models such as epochal variation in the predictand–

predictor relationship, inter-correlation between the

predictors, changing predictability, etc., there is the

necessity of subjecting statistical models to constant

scrutiny and changes if necessary (Rajeevan et al.

2004). The changes can be brought out in different

ways, such as changing the model size, the use of new

predictors, changing the combination of the predictors,

changing the length of model training period, etc. The

changes are acceptable when the modified model

shows better performance compared to the existing

model during a common test period. The continuing

efforts toward this end and attempts to adopt better

statistical techniques have resulted in the development

of new models that make use of novel statistical ideas

for the forecasting of seasonal ISMR over the country

as a whole.

Two models, namely EMR-I, and PPR-I, which are

based on a predictor set (SET-I) needing data up to

Fig. 7 a The line plot between the predictand (ISMR) and the
first projection predictor (X1 = a1

TZ) and b the line plot between
the residual r(z) = Y – f1(a1

TZ) obtained after removing the
contribution of X1 in the ISMR and the second projection
predictor (X2 = a2

TZ) during the period (1968–1980) used for
training PPR-I model for the forecasting of ISMR of 1981

Table 6 Forecast verification statistics of the EMR and PPR models computed for the period 1981–2004

S. No Verification parameter EMR-I EMR-II PPR-I PPR-II

1. CC (R) between actual and predicted values 0.86 0.88 0.82 0.78
2. BIAS of the forecasts (% from LPA) 2.4 –0.33 3.03 –0.92
3. RMSE of the forecasts (% from LPA) 5.47 4.56 6.75 6.42
4. HS (%) 67 75 63 58
5. HSS 0.50 0.63 0.44 0.38
6. FAR for below normal category (%) 0 0 0 11
7. FAR for above normal category (%) 0 0 0 0
8. POD below normal category (%) 100 100 86 67
9. POD above normal category (%) 77 82 60 63

The last six verification parameters (4–9) are based on the three category forecasts where the predictand (ISMR) was categorized into
three groups of equal prior probabilities. The three categories are below normal (<–7.45% from LPA), normal (–7.45–1.45% from
LPA) and above normal (>1.45% from LPA)
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March were developed to support the first stage fore-

cast issued in April. Another two models namely

EMR-II and PPR-II based on another data set (SET-

II) requiring data up to May were developed to sup-

port the second stage forecast issued in June. The

RMSE during the independent forecast period for all

the models (4.56–6.75% from LPA) was relatively

smaller than that for the model based on climatology

alone (10% from LPA). All the models showed better

skill (compared to the climatology-based model) in

forecasting the ISMR during most of the years cor-

rectly. Particularly, during the extreme ISMR years,

the predicted ISMR was close to the actual value.

These models were also able to forecast the recent two

deficient monsoon years (2002 and 2004) correctly.

However, it is to be noted that the overall performance

of the EMR models was better than the PPR models.

Among the EMR models, the performance of the

EMR-II was better than the EMR-I. While, the PPR-I

performed slightly better than the PPR-II model.

This is the first time that the ensemble technique

was applied in statistical models for predicting ISMR.

The use of a weighted ensemble average of a set of

suitable selected models with different predictor com-

binations for the model inferences effectively reduces

the error resulting from the use of only a single best

model. However, the reduction of error by the com-

bined use of a set (ensemble) of models in place of a

single model only reduces the chance of failure. There

is no guarantee of correct forecasts in all the occasions.

Here, we have used a set of MR models with least

RMSEs among all possible MR models for the

ensemble forecast. Other techniques such as neural

network, PPR, etc. may also be used in place of the

MR technique for developing ensemble models. We

have attempted such experiments and found that there

are not many significant changes from the results that

we have presented here.

The PPR is a new nonparametric technique, used for

the first time in the forecasting of the ISMR. In this

method, the ISMR was expressed as the sum of two

parts. The first part was computed from the first most

interesting projection that showed a linear relationship

with the predictand. The second part was computed

from the second most interesting projection that

showed a nonlinear relationship with the residual ob-

tained by removing the contribution of the first pro-

jection from the ISMR. Iyengar and Ragukanth (2003)

suggested a method of separating the ISMR series into

linear and nonlinear parts using a decomposition

technique and then predicting them individually. But

their method used the time series of the ISMR itself

only for this purpose and did not use any predictor

parameters. In the PPR method, the predictors (de-

rived from slowing varying boundary conditions) that

had significant physical and statistical relationships

with ISMR were used to predict the linear and non-

linear parts of the ISMR. Thus the PPR model is

conceptually better placed to take into account the real

nonlinear relationship that may exist between the

predictors and the rainfall while making a forecast.

It is interesting to note that we have used some

predictors from Europe and Atlantic Ocean for the

development of LRF models. This is due to the im-

proved statistical relationship of ISMR with the

Atlantic and Europe climate anomalies during the re-
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cent years (Rajeevan 2002). Recent studies (Gadgil

et al. 2003, 2004) have shown the influence of the

equatorial Indian Ocean on the variability of ISMR.

We need to explore precursors for the events in the

equatorial Indian Ocean (like EQUINOO) to use as

predictors in the empirical models along with other

ENSO-related and European and Atlantic predictors.

Various components of the Indian monsoon exhibit

significant inter-decadal variability (see the references

given in Goswami 2005). Modulation of inter-annual

variability by the inter-decadal variability is also

reflected in the epochal/secular variation of the

predictor–predictand relationship that influences pre-

dictability of the seasonal mean monsoon (Goswami

2005). A recent study by Goswami (2004) revealed that

potential predictability of monthly mean summer

monsoon climate has decreased by almost a factor of

two during the recent decades (1980s and 1990s)

compared to the decades of 1950s and 1960s associated

with the major inter-decadal transition of climate in

mid 1970s. We feel that the constant updating of the

models (as done in this study) using the sliding training

period method with an optimal window period can

offset the effect of variation to some extend in the

predictor–predictand relationship (see Fig. 2) and im-

prove the predictability. In this study, we found that

the optimal length of training period is 23 years. The

sliding training method has better predictive skill over

the traditional method in which the model is trained

using the first few years and forecasts are computed for

the remaining years using the same model constants.

To prove this point, we developed a MR model using

all of the six predictors of SET-I. The model was

trained using data for the period of 1958–1995 and

forecasts were computed for the remaining years. We

found that the forecast errors of the MR model trained

using a longer period were generally more than that

compared to the EMR-I model. More importantly, the

model trained with fixed training period (1958–1995)

was not able to correctly forecast the recent drought

years (2002 and 2004).

In order to examine the performance of the EMR

and PPR models operationally, we had prepared the

forecasts for 2005 just prior to the 2005 SW monsoon

season. Preliminary forecasts from these new experi-

mental models were included in the official press re-

leases made by IMD on the LRF for the 2005

southwest monsoon rainfall (http://www.imd.ernet.in).

The forecasts for the 2005 SW monsoons seasonal

rainfall over the country as a whole by EMR-I and

PPR-I models were, respectively, 4 and 1% from LPA

and that by EMR-II and PPR-II models were,

respectively, 1 and 7% from LPA, respectively. The

realized rainfall in 2005 season was -1% from LPA

indicating that the forecasts from these models were

closer to the realized rainfall. We have now prepared

experimental forecasts for the 2006 monsoon season.

The forecasts for 2006 by the EMR-I and PPR-I model

are -5 and -11% from LPA, respectively. The forecasts

for 2006 by the EMR-II and PPR-II models are -7 and -

6% from LPA, respectively.
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