Database Management System

Ms. Deepali National Data Centre India Meteorological Department Pune

deepali.1945@gmail.com

Slide 1

ds1 deepali sharma, 28-02-2021

File Management Systems

File based systems

- Data is stored in files
- Each file has a specific format
- Programs that use these files depend on knowledge about that format

- Problems:
 - No standards
 - Data duplication
 - Data dependence
 - No way to generate ad hoc queries
 - No provision for security, recovery, concurrency, etc.

File Processing Vs DBMS

File Systems :

- Store data over long periods of time
- Store large amount of data

However:

- No guarantee that data is not lost if not backed up
- No support to query languages
- No efficient access to data items unless the location is known
- Application depends on the data definitions (structures)
- Change to data definition will affect the application programs
 - Single view of the data
 - Separate files for each application
 - Limited control to multiple accesses
 - Data viewed as physically stored

Basic Definitions

Data : Known facts that can be recorded and have an implicit meaning.

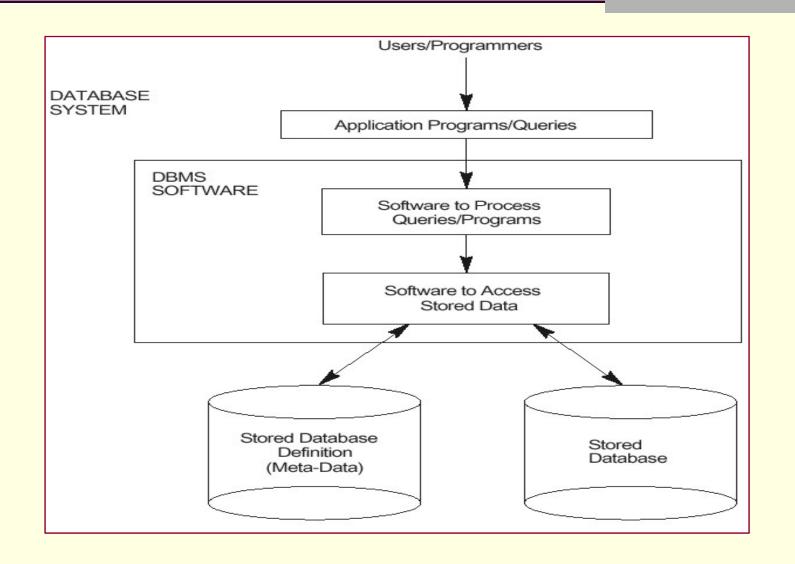
Database : A collection of related data. A collection of data arranged for ease and speed of search and retrieval" -Dictionary.com

Database Administrator : Responsible for authorizing access to the database, coordinating, monitoring its use, acquiring hardware, software needed.

Database Designers : Responsible for identifying the data to be stored, storage structure to represent and store data. This is done by a team of professionals in consultation with users, and applications needed.

Basic Definitions

Database Management System (DBMS): A software package/ system to facilitate the creation and maintenance of a computerized database.

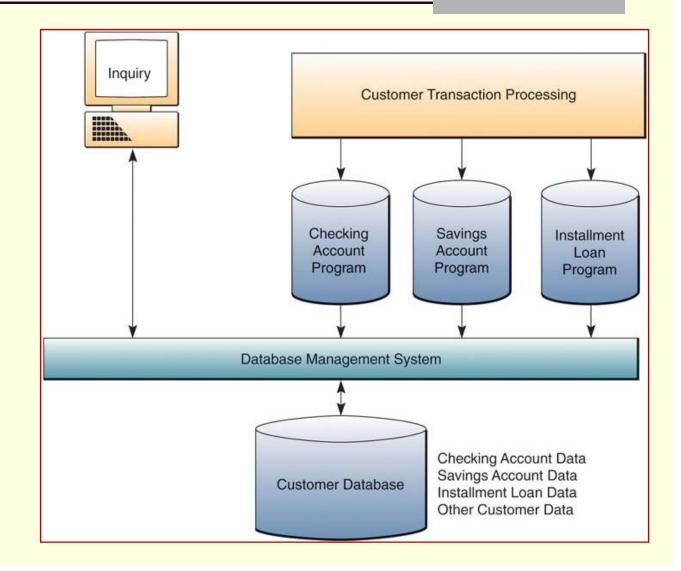

- It defines (data types, structures, constraints)
- construct (storing data on some storage medium controlled by DBMS)
- manipulate (querying, update, report generation) databases for various applications.

Examples:

 Oracle, DB2 (IBM), MS SQL Server, MS Access, Ingres, PostgreSQL, MySQL

Database System: The DBMS software together with the data itself. Sometimes, the applications are also included.

Database System


Database System

- A database system consists of
 - Data (the database)
 - Software
 - Hardware
 - Users (End users, Database Administrator (DBA), Application developers, Database systems programmer)
- We focus mainly on the software

- Database systems allow users to
 - Store
 - Update
 - Retrieve
 - Organise
 - Protect
 - their data.

Example:

Consolidates data records into one CENTRAL database that can be accessed by many different application programs.

An example of a database that stores student records and their grades.

							_			
STUDENT	Name	StudentNu	mber	Class	Ma	ajor				
-	Smith	17		1	C	s	1			
	Brown 8			2	C	CS				
							_			
COURSE	Co	urseName		CourseN	umb	per	CreditH	ours	D	epartment
	Intro to C	Computer Scie	ence	CS131	0		4			CS
	Data Str	uctures		CS3320	0		4		1	CS
	Discrete	Mathematics		MATH2	2410		3			MATH
	Databas	e		CS338	0		3			CS
SECTION	Sectio	onldentifier	Cou	rseNumb	er	Se	mester	Yea	ır	Instructor
51%		85	M	ATH2410		F	all	all 98		King
		92	C	CS1310		F	Fall			Anderson
		102	C	CS3320		Spring		99		Knuth
		112	M	/ATH2410		Fall		99		Chang
		119	CS1310		Fall		99		Anderson	
		135	C	CS3380		F	all	99		Stone
GRADE_R	EPORT	StudentNu	mber	Sectio	nlde	entifi	ier Gra	ade		
		17		112			В			
		17		119			С			
		8		85		A		· ·		
		8		92		2 4		· ·		
		8			102	2 E		в		
		8		135		A	\			
PREREQU	ISITE	CourseNumber		PrerequisiteNur		mber				
		CS3380)	CS3320						
		CS3380		MATH2410						
		CS3320	}	CS	\$131	0				

What the DBMS does

- Provides users with
 - Data definition language (DDL)
 - Data manipulation language (DML)
 - Data control language (DCL)
- Often these are all the same language

- DBMS provides
 - Persistence
 - Concurrency
 - Integrity
 - Security
 - Data independence
- Data Dictionary
 - Describes the database itself

ACID Properties

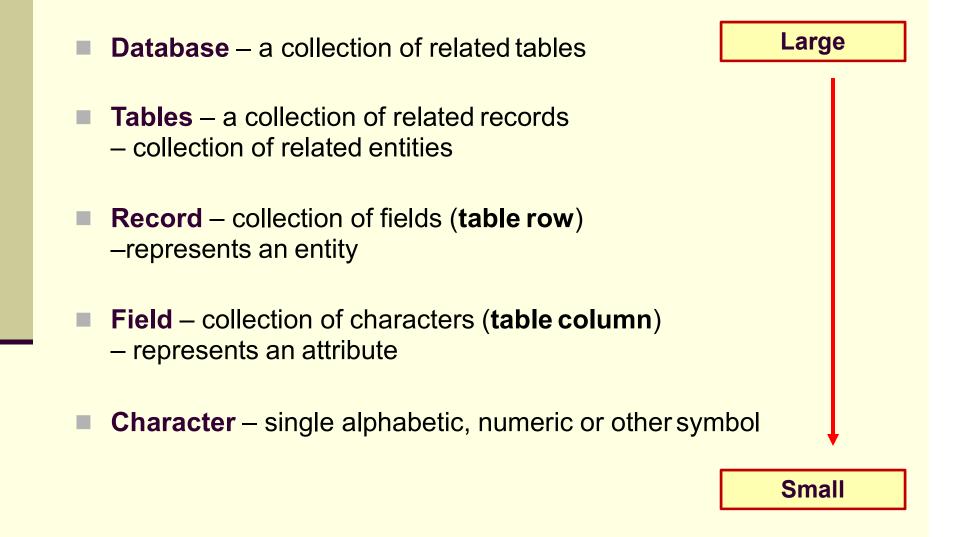
ACID Properties are used for maintaining the integrity of database during transaction processing. ACID in DBMS stands for **A**tomicity, **C**onsistency, **I**solation, and **D**urability.

•Atomicity: A transaction is a single unit of operation. You either execute it entirely or do not execute it at all. There cannot be partial execution.

•Consistency: Once the transaction is executed, it should move from one consistent state to another.

•Isolation: Transaction should be executed in isolation from other transactions (no Locks). During concurrent transaction execution, intermediate transaction results from simultaneously executed transactions should not be made available to each other. (Level 0,1,2,3)

•**Durability:** • After successful completion of a transaction, the changes in the database should persist. Even in the case of system failures.


Database Foundation

Foundation Data Concepts

Abstract Concepts

- Entity person, place, object or event
 - stored as a record or a table row
- Attribute characteristic of an entity
 - stored as field or table column

Data Concepts

Characters "Last Name" form a field

Last Name

Sadu

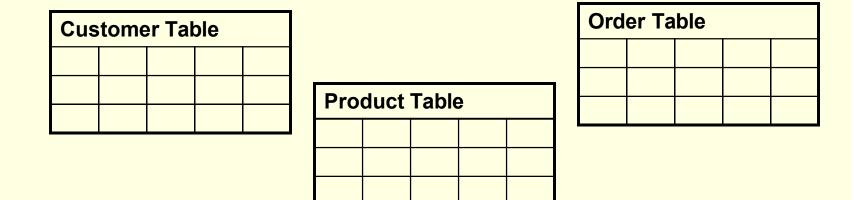
A field is an attribute of an entity

Records A bunch of fields form a record

First Name	Last Name	Sex	Age
Hari	Sadu	Μ	45

A record is an entity

Tables


A bunch of records forms a table

First Name	Last Name	Sex	Age
Hari	Sadu	Μ	45
Abhimanyu	Singh	М	25
Shanaya	Singhaniya	F	23
Rohan	Nanda	Μ	24

A table is a group of related entities

Databases

A bunch of tables form a database

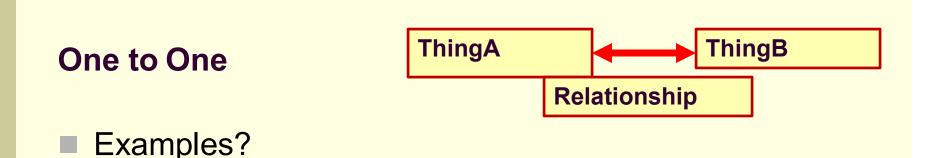
A database can represent a single business or an entire system

Database

But, database is not just a bunch of tables

		Orders										
		OID	D CID		PI	PID C		Quantity				
			001	508	508 199		500,000		,000			
			002	508		201			2			
			003	510		201			1			
		Cus	tomer	S				Products				
	CID	FName	LName	Ad	dres	SS		PID		Description	Cost	
l	508	Eric	Breimer					199		Viagra	\$45.99	
	509	Andrew	Zych					200		Tooth Paste	\$2.58	
	510	Greg	Smith					201		Hair Gel	\$5.99	

A database also includes relationships between the different tables


Database

Relationships

Relational Theory

- In order to work with DBMS it is necessary to understand the basics of relational theory. i.e how and why data is stored and managed in a relational database.
- The guiding principle behind a relational database is to store data once and only once.

Types of Relationships

- Analysis Technique
 - Consider ThingA and ThingB
 - Can ThingA be related to more than one ThingB?
 - Can ThingB be related to more than one ThingA?
 - If the two answers are NO, then it is a one to one relationship.

Types of Relationships

- Analysis Technique
 - Consider ThingA and ThingB
 - Can ThingA be related to more than one ThingB?
 - Can ThingB be related to more than one ThingA?
 - If only one answer is yes, then you have a one to many relationship

Types of Relationships

- Analysis Technique
 - Consider ThingA and ThingB
 - Can ThingA be related to more than one ThingB?
 - Can ThingB be related to more than one ThingA?
 - If the answers are yes and yes, then the relationship is many to many.

Model Relationships Example

		Orders									
		OID	CID	CID		PID		Quantity			
			001	508	08 199			500,000			
			002	508		20	1		2		
			003	510		20	1		1		
		Cu	stomer	S						Produ	cts
	CID	FName	LName	e Ac	Idre	SS	$\left \right $	PID		Descriptio	n Cost
	508	Varun	Dhawan				1 \	199		Shampoo	\$45.99
	509	Andrew	Zych					200		Tooth Paste	\$2.58
	510	Greg	Smith					201		Hair Gel	\$5.99

Database vs Relational Database

Relational Database	Database
A relational database can store and arrange the data in the tabular form like rows and columns.	It is used to store the data as files.
In a relational database, the values are stored as tables that require a primary keys to possess the data in a database.	Generally, it stores the data in the hierarchical or navigational form.
It is designed to handle a huge collection of data and multiple users.	It is designed to handle the small collection of data files that requires a single user.
Stored data can be accessed from the relational database because there is a relationship between the tables and their attributes.	There is no relationship between data value or tables stored in files.
The data normalization feature is available in the relational database.	It does not have a normalization.
A relational database uses integrity constraints rules that are defined in ACID properties.	It does not follow any integrity constraints rule nor utilize any security to protect the data from manipulation.

Reassembling data

- Data was broken down into tables to preserve integrity
- How can we put it together to derive information?
- Use Structured Query Language (SQL) to JOIN tables using a common attribute

Join

orders

OrderID	CustomerID	OrderDate
10308	2	1996-09-18
10309	37	1996-09-19
10310	77	1996-09-20

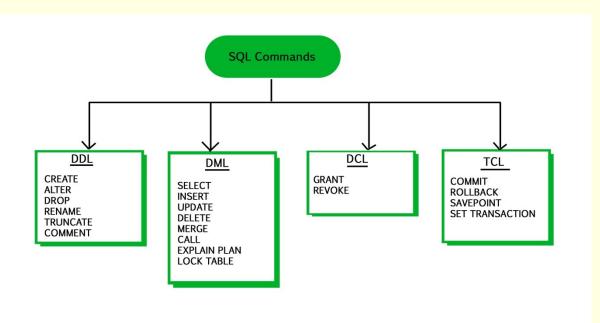
customers

CustomerID	CustomerName	ContactName	Country
1	Alfreds Futterkiste	Maria Anders	Germany
2	Ana Trujillo Emparedados y helados	Ana Trujillo	Mexico
3	Antonio Moreno Taquería	Antonio Moreno	Mexico

SELECT Orders.OrderID, Customers.CustomerName, Orders.OrderDate
FROM Orders
INNER JOIN Customers ON Orders.CustomerID=Customers.CustomerID;

OrderID	CustomerName	OrderDate
10308	Ana Trujillo Emparedados y helados	9/18/1996

Primary Key (Unique and not NULL)


- Identifies the row of a table without duplicates.
- Tells you what the row contains
- Eg. If **tree_id** is the primary key then the row has information about that tree

Foreign Key

 A foreign key is a column in a table that matches the primary key column of another table. Its function is to link the basic data of two entities on demand, i.e. when two tables are joined using the common key.

Database Languages

Database Languages

DDL (Data Definition Language) DML (Data Manipulation Language) DCL (Data Control Language) TCL (Transaction Control Language)

DBMS Languages

•Data Definition Language (DDL): Using the DDL statements, you can create the skeleton of the database.

•Create: It is used to create objects in the database.
•Alter: It is used to alter the structure of the database.
•Drop: It is used to delete objects from the database.
•Truncate: It is used to remove all records from a table.
•Rename: It is used to rename an object.

•Comment: It is used to comment on the data dictionary.

Contd.

- Data Manipulation Language (DML): Used to specify database retrievals and updates.
- Alternatively, *stand-alone* DML commands can be applied directly (**query language**).
- •Select: It is used to retrieve data from a database. •Insert: It is used to insert data into a table.
- •**Update:** It is used to update existing data within a table.
- •**Delete:** It is used to delete all records from a table.

Assess Yourself:

1. DML is provided for

a) Description of the logical structure of database

- b) The addition of new structure in database
- c) Manipulation and processing of the database
- d) Definition of a physical structure of the database system

Contd.

2. Related fields in a database are grouped to form

- a) Data file
- b) Data record
- c) Menu
- d) bank

3. DBMS is software.

a) True b) False

THANK YOU!