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Vorticity and circulation

There are two complementary concepts that quantify the rotational property of a flow :
Vorticity and circulation.

For solid objects we do not speak of the vorticity of an object but instead we refer to its angular

velocity.

Vorticity is a local measure, whereas circulation is a bulk (integral) measure. Each can be defined

either in the Lagrangian sense or in the Eulerian sense.

Vorticity (®) is defined as the curl of the velocity :  * Any velocity vector is intrinsically orthogonal to
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k. (V y ‘7) — ¢ =Lim V.dl Stokes's theorem: the circulation around a contour that contains a group of

4-0 A vortices is just equal to the sum of the enclosed vortex strengths.




_Circulation and vorticity on sphere

Large -scale: the amount of (net) force that pushes \ Local scale: measure of the angular
along a closed boundary or path velocity of the fluid

One can compute the relative circulation (l“r )of a flow field on sphere:

Vorticity (vector)

I, =v,(p)acospALl+v, (A +AL) aAp—v, (@ +Ap)acos(p+ Ap)AL -V, (1) aAp
L, _v(pacosp v,(A+Ad) a v (p+Ap)acos(p+Ap) v,(A)a
AdA@ Ap AL Ap AL
r, :a[ww@—m(ﬂ)}_a[mwAw)cos(wmw—mmcowj
AdA@ AL Ap
For small A4, Ap {a= radius of the Earth}

r v, 0
L =g ——(v, cosp)
AAA@ oA O¢p

Recall that by Stokes' theorem, I', = ¢4 [Circulation has the units of m’s™]|
¢ . = vertical component of relative vorticity
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Components V. of a gradient flow Vg that contribute

to the circulation around the closed curve




On a Cartesian framework| |/=k. (V y ‘7) _Ov_ Ou
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Considering the circulation about a rectangular element of area oxo0y in the (x, y) plane.

L,

Evaluating V - d1 for each side of the triangle gives the circulation
C= m{f -dl = [_ﬂ(uder vdy)
The circulation around an infinitesimal fluid element ABCD: 6C =C , +C,. +C., + C,,
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Vorticity and circulation in a rotating reference frame

Absolute vorticity (@,) = vorticity as viewed in an inertial reference frame.

Relative vorticity (£,,) = vorticity as viewed in the rotating reference frame of the Earth.

Planetary vorticity (@) = vorticity associated with the rotation of the Earth (/" = 2Qsin ).
= In Meteorology, by the term circulation, we mean the circulation of velocity vector \Y
Vorticity vector: g Ut (?) i Cyclonic
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Low pressure systems (cyclones) : I'>0, £ >0, Anticlockwise flow.

High pressure systems (anticyclones) :I'<0, £ <0, Clockwise flow.




I' =1 +2Q4,
[' =T +(2Qsinp)A4

Area projected on

the equatorial

plane

The absolute circulation is related to the relative circulation by |[I') = 1" +2QA4

where 4, (= 4 sin @) 1s the component of the area of the loop considered that 1s

perpendicular to the rotation axis of the Earth

circulation (2Qsinp ) = planetary vorticity (2€2sing) x area (A4)




Vorticity and

Circulation 1s a scalar measure of fluid rotation. oo

If we consider a closed path ¢ around the fluid
flow then circulation (I') 1s defined as the

line integral of the tangential velocity around ¢

['= [‘ﬂ{f-di = [‘ﬂ‘{f‘cosa dl

c

By applying the Stoke’s theorem, circulation can be related to the

vorticity as; FzLV-dIzH(VXV)-ﬁ a’Szﬂ(TJ-ﬁ dS
S S

In conclusion, vorticity and circulation are two primary measures of
rotation in fluid flow. Circulation 1s a macroscopic scalar measure of

rotation for a given area of the fluid. However, vorticity being a vector

quantity 1s a microscopic measure of rotation for any point in the flow.




Circulation and angular velocity

Considerations of angular momentum of fluid parcels is particularly
important in understanding atmospheric dynamics

a
( j:l

= Circulation has the advantage over angular velocity

that no assumption of a solid body is required and so

it is suited to describing angular momentum ideas in a fluid.

:
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Consider a circular ring of fluid of radius R

<!

=

in solid-body rotation at angular velocity Q

about the z-axis. The velocity field can be The fundamental definition of vorticity is (2Q),

. . . . that is, twice the local angular velocity
written as: U = Q x R where R is the distance

from the axis of rotation to the ring of fluid Vorticity however has nothing to do with a
I path, it is defined at a point and would indicate
C= [ﬂU -dl = I QR*dA = 29(7TR2) the rotation in the flow field at that point.
0
C

= 2Q) =|twice the angular speed of rotation of the ring

TR*

Unlike angular momentum or angular velocity, circulation can be computed without reference

to an axis of rotation; it can thus be used to characterize fluid rotation in situations where

"angular velocity" is not easily defined




Circulation

Circulation 1s a scalar that measures the rotational property of a flow stemming

from the notions of vortex lines and vortex tubes

—> A vortex line 1s defined to be a line to
which the vorticity vector is tangential
at every point of it
(analogous to streamline)

—> The totality of all vortex lines passing

through I would make up the surface 5

of a tube 1s called vortex tube
—> The fluid inside such a tube is called a X

vortex filament
We now define a line integral of the velocity component tangential to this chosen

closed curve (I'). The sign convention is that this integration is performed in an

anticlockwise direction |C = [J]V -dl
T




Exact differentials

Exact differentials: which are differentials whose integral around a close path is zero.

If a function f of two variables x and y has a differential that 1s written as

df = Mdx + Ndy — then it is an exact differential if oM = N — [ﬂdf =(

oy  ox

— If a diffential 1s function of only a single variable and is of the form, df = M (x)dx,

then it is an exact differential as long as M is integrable ( f1is differentiable).

Conservative vector fields = which are vector fields g (gravity vector) that can be

written in terms of the gradient of a scalar, such as "geopotential" (g = V®

A conservative vector field has the property [ﬂg -l = mVCD .dl = ” (Vx VO)- dA =0
A

Remember the vector property : curl of gradient of a scalar function = 0| < |V x VD =0

Cz[‘ﬂ{’-di:m(udx+vdy):> if V is conservative, 8_u:@<:> @—a—u:O:g“EO
oy Ox ox Oy

If Vx V =0 everywhere, then the field is called "irrotational", thus curl free field is

conservative, A rotational vector 1s a vector field whose curl can never be zero.




Circulation theorems

Circulation theorems deal with the change or evolution 1n circulation and its cause(s).

For an arbitrary vector field (B), the circulation theorem states that the time rate

of change of circulation of B is equal to the circulation of the time rate of change of B

Circulation theorem:

N

d ¢ dB
E[_ﬂB-dl:[_ﬂE-dl

Velocity vector on an inertial frame

V.=V +QxF

= Kelvin's circulation theorem, it is applied to the absolute velocity \73 of fluid motion

dC, d ¢t . odV, _d, . edV, V. .V,
dt _dtmv*“dl:m dt 'deVaE(dl):m dt d”%

—> as the line integral of an exact differential around a closed path = Zero

In Meteorology, circulation theorem

d C d V.
I

dl| <

simply states that the acceleration

of circulation 1s equal to the circulation

of acceleration




Circulation theorems: Corollary dC, mdﬂa

- dt
: N 1 .
Equation for absolute motion is given by: 4—~%=—-—Vp+g

dt

[_ﬂa sl = —[j] Vp- d1+£[],g/ jj(——vpjndS H(V"XVPJ ds

= g is a conservative force field. It is also known that work done by

a conservative force field around a closed path is zero [_ﬂg dl = [_ﬂVCD : dlz[_ﬂ dd =0

gravity force would not be

Therefore, for a frictionless flow, d"dc" = J‘J‘(LXZVPJ -1 dS|linvolved in the generation
t AL p

of rotating motion

—> in a barotropic atmosphere the density, p= p(p) < VpxVp=0

- : dC : L
Therefore, for a frictionless barotropic flow, f = (0 < Circulation is conserved
4

This is a direct corollary to the Kelvin’s theorem. Hence from Kelvin’s circulation

theorem it may be stated that for frictionless flow change in absolute circulation

is solely due to the baroclinicity of the atmosphere.

daCa [_ﬂ dp L Baroclinic fluid integrated effect of pressure-gradient force Bjerknes circulation

VpxVp =0 can change the absolute circulation theorem




oL 1
Baroclinicity term = —[_ﬂ—Vp dl = —[_ﬂ aVp - dl

—man dl ——_[Vx avVp)-dA

ﬂ(anVp -dl = }A/Vpﬁﬁ IVapr

dC|
dt

A

- —I(Va xVp)-dA = —.HVaHVp‘sin,B dA
A

B {O — 7 = clockwise

< B <2x = anticlockwise

B = Angle between the gradients of « and p

For the atmosphere, which 1s an ideal gas, the solenoidal

term can be written in terms of the temperature and pressure

gradients as

dt

e
dt

=—R[[VTxV(Inp)-dA

| Baroclinicity

Lower density

Higher pressure

CONSIANE pressure surface

CRESIanE pressure surface

canstant density surface




Bjerknes circulation theorem - examples

% # 0 in a baroclinic fluid
4
o~ 4 (0 +204)= _md_l?
dt dt yo,
dcC,,
— =—||RTd In
o= WrTdin
(along a vertical plane) f is negligible

where C 1s circulation, 4, is the area of the integral circuit projected

onto the equatorial plane. The term on the right-hand side represents

solenoidal or baroclinic generation of circulation and 2QA4, term

represents the change in circulation due to rotation of the Earth.

= In a baroclinic fluid, circulation may be generated by the

pressure-density solenoid term

Below we present an example of how Bjerknes' circulation theorem can be used
to predict the circulation induced by a horizontal temperature gradient such as
might be found along a mesoscale air mass boundary.i.e., we apply the circulation

theorem by integrating around a circuit in a vertical plane

dC

—= {J|RTd1n p
d—C=Rln[&J(fw ~T)>0
dt D,

p, =900 hPa, p, =1000 hPa
T =300K,T =290 K

T e e e e o

ac _ 302 m’s < an increase of

dt
C of 1.09x10° m?*s™" in 1 hour

e e

—TI —> 1—"“

-_—

Pp



Land and sea breeze
See Holton’s book for more details

ac, =R ln[p% j(TLAND - TOCEAN) =-302 m’s™

temperature difference (20°C) is inducing a clockwise

circulation

—

To estimate wind acceleration,
dvV dv
dl

dCc LAV

dC _ cdV du _ dCldr
dt 7 dt dt

dt 2AL+h)

du _ Rln(p975 /p925)
dt 2(L+h)
L =20km; h =434 m (using hypsometric equation)

T —-T,)=-74%x10"° m’s™
(7.-T)

<> which could produce a wind speed

of 25 m s™' in 1 hour in the absence of friction

£ _925mb

950 mb

975 mb

Resseppn s ¥ ¥

Land (25 °C) Water (5 °C)

Air flows offshore at higher levels
H " L
“
Heating causes column 925 mb

of air over land to expand

950 mb

975 mb

Warm land mass
heats overlying air

Land (25 °C) Water (5 °C)
e
o PGF b
925 mb
950 mb
Air flows onshore at lower levels
975 mb
PGF
L et} H

Land (25 °C) Water (5 °C)



Land and sea breeze

For the atmosphere, which 1s an 1deal gas, the solenoidal

term can be written 1n terms of the temperature and

pressure gradients as

AM (Sea Breeze)

dC
dt

—R”VTX V(lnp) - dA

PM (Land Breeze)

L

—

Ocean



Solenoidal or baroclinicity

\\ AN N
pZ N
CKO \\ 051 \\ e sz \\
AN N [94 N
P ¢ ™ \\ |ﬂ R A
\\ \\ #Vp \\
Y i, = VT %
» cool ~ P\ warm L
O - > e >0
dt
water land
(@) Day
E—
P, !
% - Vo\m Gy =+
s Ay
// p Fd
Vi< - - o cool
! warm . 7
pO 7 7 —
dC
water land — <0
(b) Night dt

A

In terms of temperature gradients,

Low level winds flow in the direction of V7 > 0

Z —U VaxVp)- a’A a=1/p
dC -
Z:—RLJ.VTXV(Inp)-dA

dc
dt
4€ _ {\v1||Vin p|sing d4
dt y

If the atmosphere is barotropic
k-(VpxVa)=0

Pressure and density surfaces lie

=—[|Ve Vp|sing dA
JIVe|[vpl

A

on each other (barotropic atmosphere)

If the atmosphere 1s baroclinic
k-(VpxVa)>0 = cyclonic
k-(VpxVa)<0 = anticyclonic




Vorticity and circulation in a rotating reference frame

Kelvin’s circulation theorem which states that if the fluid is barotropic on the material curve C and the

frictional force on C is zero then absolute circulation is conserved following the motion of the fluid

In a rotating fluid, the

velocity vector (on an inertial frame) V, = V., + (Q X r)f

so that the vorticity associated with the velocity in an inertial frame 1s related to the velocity in a rotating

frame by (@, =0, +Vx (Q X r) =0, =0,+2Q where @ =VxV

frame

the frame

<> so the vorticity in the inertial frame is equal to the vorticity seen in the rotating frame called the relative

vorticity plus the vorticity of the velocity due to the frame’s rotation which is just twice the rotation rate of

To examine the form

of Kelvin’s theorem

for a rotating frame

C, =C+ m(ﬁ X F) -dr The circulation observed in a rotating frame
dC,, dC dA, VpxVp .
_ ~ A _ abs ZQ — dA
Copo =C+[2Q-RdA=C+204,| 1 =0 I P

Consider the situation where viscosity can be neglected and where the fluid is barotropic (Vp xVp = O).

dC dA,
dt dt

=0=

which just tells us that the absolute circulation is conserved

< In other words there will be a trade off between the relative i

= C,-C =-2Q(4,

and planetary vorticities / e T?f\a

sing, — 4,sing,)




Vorticity and circulation in a rotating reference frame

To examine the form | |C, =C + Eﬂ(ﬁ X F) -dr The circulation observed in a rotating frame
: dC,, _dC dA, +ijpr

of Kelvin’s theorem -
Copy=C+[2Q-RdA=C+204,| 0 = T2, ;
A

-n dA

for a rotating frame P

Consider the barotropic situation where viscosity can be neglected

which just tells us that the absolute

dC 20 dA, 0 circulation is conserved < In other
- — =
dt dt words there will be a trade off between

the relative and planetary vorticities

= C, —C, =-2Q(4,singp, — 4;sing))

— A material curve that is shifted to higher latitude. As the curve

moves to higher latitude the area normal to the Earth’s rotation | A" air parcel at 30°N moves northward conserving absolute

. 1y - . . . . vorticity. If its initial relative vorticity is 5x107s™', what is
axis will increase and so the circulation associated with the _ ' o _
its relative vorticity upon reaching 90°N?

(§+f)30 = (§+f)90 = (5x10" | Q) (29,
= In order to conserve the absolute circulation the relative £ a0

planetary vorticity increases (2€24,)

] _ an anticyclonic circulation is Q
circulation must decrease |
induced

Implication : conservation of absolute vorticity (CAV) / L] j&«

a negative absolute circulation in the Northern L K

Hemisphere can develop only if a closed chain of fluid particles \ N
is advected poleward <& Rossby wave — CAV trajectory A




Vorticity and circulation in a rotating reference frame

The rate of change of the relative circulation

d ¢ dC - = Vp =
jl‘ : V'dl—E—Eﬂ(—zQXV)'dI—Eﬂ?'dl+|:;[|Ffriction -dl
where Fﬁicﬁon 1s the frictional force per unit mass. There are

therefore three terms that can act to alter the circulation.

Eﬂ(—zﬁxV)-m

Consider the circulation around the curve C in a divergent flow.

It 1s clear that the coriolis force acting on the flow field acts to

induce a circulation around the curve C

Consider friction to be a linear drag on the velocity with some

timescale 7

friction acts to spin-down
dC C

. 1 o
—=||F.... -dl=——|||V-dl =—— = |the circulation
dt Eﬂ friction T [_cﬂ T

spin-down = decay




Helmholtz theorem

Theorem: Every vector field V whose divergence and rotation possess potentials

that 1s irrotational.

can be written as the sum of a divergence-free vector field plus another vector field

non-divergent (divergence-free; Vw)

— —

V=V, +V =kxVy+Vy|<

divergent (irrotational/curl-free; VZ)

where v 1s the stream function and y is the velocity potential. The relative

vorticity (¢) and divergence (0) can be expressed as follows: PV
—_ (=2
c=k-VxV_ = 1 v _0 (ucosgp) =Vy Ox Oy
Y acosp| 04 Og 5
u Oov
1 o o O=—"+—
5=V-V = +—(vcosp) [=V?y Ox Oy
* acosp| 04 Op dy
U =———v, =—
_ n n _ n n 4 >y
v lovi 1 ove o 1 oy; Tows o
' adp acosep 01 * acosp O  a 0p Oy
= = u :_,V =
Typically, |Vl//| >>|VZ| oo




Helmholtz theorem | == _

Irrotational vector V P

In vector calculus an irrotational vector field is a vector \71 with curl zero at all points

, = Any motion in which the curl of the velocity vector is
inthe field [VxV =0/

zero 1s said to be "irrotational" — potential flow

In a vector calculus a solenoidal vector field is a vector field V with zero divergence

Any motion in which the divergence

at all points in the field |V -V = 0| < |of the velocity vector is zero is said

to be "solenoidal" — can produce vorticity

VXV:VXV\V+VXVZ V-V=V-V, +V-V,
VxV:Vx(l}xﬁl//)—l—W V-V=W+V-V;(

VxV, leads to Vy = ¢ V-V leadsto Viy =6

rotational part of V = vorticity irrotational part of V = divergence
(Measure of the non-divergent part of the wind)|{(measure of the divergent part of the wind)




[Stream function and velocity potential J

Helmholtz decomposition:

On a line of constant velocity potential y(x, y) is constant,

The horizontal velocity field VH = \7(/, + \71 so that d =0
In terms of scalar functions, we can write \7H =kxV w+Vy dy=Vy-ds=0
On a streamline, w(x, y) is constant, so that the dy = oy dr+ %4 dy =0 3)
total differential dy=0 Ox y
dy =V -ds=0 Irrotational part of the winds: \71 = uli + vlj'
0 A 0W ) (2 3 3 Ox:  Oxx
4 [ax Jay)( JJ’) V,=Vx (8xl+6yj
oy oy ox ox
ox oy Ox oy @
Rotational part of the winds: V,, =u, i+ v, j Substituting (4) in (3). udx+vdy =0 = (d_y) __u
V. —kxvy = -0V S
v V= oy ! Ox ] This is the equation of the velocity potential.
oy oy Since the slopes of a streamline and of a line of constant
oy Ox velocity potential are negative reciprocals of one another,
o . dy v streamlines and velocity potential lines must be mutually
Substituting (2) in (1), vdx—udy=0 = ||l —| =— :
dx ), wu perpendicular.

This is the equation of the streamline.

Lines of constant y (streamlines) are perpendicular

to lines of constant y (velocity potential lines).




(a)(V,A9*)(850mb) (b)[A(x*,V:5)(850mb),P]
30°N day 1 day‘ 1~ ‘.:J - ' ;—}.‘: : N
- 7-1-..\‘- . [ )-’:___\ o
— \ rF30y i .,j: *31:/ | Composite monsoon depression
o YN, S| depicted by the 850-mb
10°Nf~Z AT ARG LA k4 1 streamline field superimposed
L Ao PN, XX with stream function departures
30°N1987 R da?? - }4; A :E{ 5 ;‘": 1 (shaded areas) from their
". f A XN summer (J]JA) mean values in
20°N 2T A3 PGl ?‘.“: 1 the short-wave regime, Ay*(850
— ’3%?3‘4 3 :"'ﬁ N o mb), (b) compogite 850-mb
»--= ~ v R, Y. velocity potential and divergent
- ] e -2 { wind departures in the short-
- o Vel £

wave regime superimposed with
recipitation, [A(ys, Vp) (850
, P]

streamlines and velocity
potential lines are mutually

perpendicular to each other.

60°E 80°E 100°E 120°E 60°E

80°E 100°E

10° s 1T ' mm-d-CE 8 Velocity potential
oL 1ot Otream function .

CI: 105%m®s



Vy is irrotational, but has divergence V° y. Because of this last property,

examination of the velocity potential is especially useful as a diagnostic
tool for isolating the divergent circulation

SUMMER

30N [/

303

30N

30S : . .

! 1 1 .
60w o 60E 1I20E 18O 120w

Distribution of the upper tropospheric (200 hPa) mean seasonal velocity

potential (solid lines) and arrows indicating the divergent part of the mean seasonal

wind which is proportional to V. (Adapted from Krishnamurti et al. 1973).




In x - y system — Laplacian operator — "curvature of function or field"

-2y, + — 2y, +
k(VxV)jg_@_ﬁ_u_vyj Viery =2V ¥ Wiy Vi =2V ¥V
ox oy Ax Ay
V VH:5:a_u+@:VZZ:/Yl+1]_2/Yi,2j+zl 11_|_sz+1_2)(12]+le1
ox Oy Ax Ay

<> It tells you how much the value of the field differs from its average value

taken over the surrounding points.

What is the physical significance of the Laplacian ? , V2 v > 00— ';V <0
In I-D V? d t 821// é/szz_lﬂj max
n1-D = Vi reduces to — Vl)y<0—)l//l.’j >0
2 2
If 0 1/2/ >0 — w(x)isconcave (convex if 9 l/;< 0)
ox X 9(.j+1)
o0’y w 1s less than the average of y in its Ay
ox’ Z0= surroundings
X
2 Ax Ax
V7w >0 — the slope of i increases in all directions, _._._'_
| (i-1.j) (i.) (i+1.])
v being less than the average of the local value. Ay
V’y <0 — the slope of i decreases in all directions, ® (i.j-1)
v being locally greater than the average value.




Velouty potentlal

SUMMER
oSN/
30N Y f’ -1

60w 0 60E 1I20E 180 120w
WINTER
1
30N
0 X .
: 4 K
i | 1 i
60w 0 60E 1I20E 160 120w

When interpreting the y-fields, a note of caution is appropriate. Remember that
Viy=V. \7H and that |w| 1s proportional to ‘V : VH‘. Therefore centres of ¥

maximum or minimum do not coincide with centres of w maximum or minimum.

2 . . . .
—> The latter occur where V* ¥ 1s a maximum or minimum.




Relationship between divergence and vertical motion

ou Ov Ow
+—+—=
ox oy Op

The continuity equation (in isobaric coordinates) is given by: 0

oo_(u ) oy __,
op ox oy),

< the velocity divergence on an isobaric surface 1s related to how vertical velocity

changes with height.

Let us now integrate this between two arbitrary 1sobaric surfaces p, and p,,

1e., p, 1s found closer to the surface than 1s p, given that pressure j

where p, >
Py = Pr (decreases with increasing altitude

0~ —pgw

_T@a)
o< w>0

Pr
—dp=—[do=o(p,)-ao(p,)
Pp ap Pp

= the difference in vertical motion @ over some vertical layer bounded by two isobaric

Pr
I odp =
Pp

levels p, and p, (Where DPs > Pr ) 1s equal to the vertically integrated divergence within

Pr
that layer |o(p,)—a(p,) =— j Sdp

Pp




Dines compensation and level of non-divergence

Let us now consider a hypothetical atmosphere comprised of two layers :

one between the surface ( psfc) and some mid-tropospheric isobaric level ( D; ),

and one between some mid-tropospheric 1sobaric level ( p L) and the tropopause ( Pirop )

Pr a)(ptm ) =0
For the lower layer, J. édp = w(p,.)—o(p,) prop d

P sfc

P
The surface is a rigid bound on vertical motions, so, J odp =-w(p,)

P sfc

Prrop
For the upper layer, I odp = w(p,) — o(p,,,)

pL

Due to the large atmospheric stability found at the tropopause, the

tropopause itself is also treated as a rigid bound on vertical motion. therefore w(p,,,) =0,

Prop
thus simplifies to I odp = o(p,)

: W = —pgW
Upon inspection, we can notice, —T odp ZPTP odp a) < O <:> 1% Y% > O

Psfe Pr




Dines compensation and level of non-divergence

In other words, the vertically integrated divergence ) Puvop
in the lower layer is cancelled out by the vertically J odp + j odp =0
integrated divergence in the upper layer. Pye P

Stated differently, the divergence within the lower | 7
layer is equal 1n magnitude and opposite in sign to
the divergence in the upper layer. This implies that | , ..o
the two are in balance with each other, such that

one compensates for the other. This important

i
principle 1s known as Dines’ compensation principle _

Thus, an important corollary to Dines’ compensation principle states that there

must be at least one level at which the divergence is zero.

0w
< where —=0 - w__

op

= This level is the level of non-divergence. In the troposphere, we often find a

level of non-divergence in the middle troposphere, typically between 500 — 600 hPa.




Horizontal divergence (solid red line) and vertical motion (dashed red line). LND = Level of non-divergence

The real atmosphere typically cannot be considered by two vertical layers. The vertical

motion at any isobaric level p 1s equal to the negative of the integrated divergence

p
between the surface and p = |w(p) = — _[ odp t

p sfc

In real atmosphere, there would be | »
multiple LND’s wherever there is a

shift from divergence to convergence,
or ascent is maximized.

Pste




Extratropical cyclone Anticyclone Complex disturbance

200 mb
® £ © ascent
400 mb o oy
ascent subsidence
600 mb
subsidence
800 mb _ i
cony div
1000 mb
conv div cony div conv div

Vertical distribution of vertical motion and
horizontal divergence in an extra- tropical cyclone,
an anticyclone and in a more complex synoptic-
scale disturbance, after (Sutcliffe, 1947).



Convergence/divergence and vertical motion

Surface Convergence/Divergence and Vertical Velocity w

Tropopause Convergence/Divergence & Vertical Velocity w

T Z s

ﬂ » w(Az) -w(0) _ w(A2)
éz Az =
w(Az) >0 ;; wAz) <0 I 1=Az

8w _ W(zp,)—w(zp,, —A2) » w(zp,, —Az)
oz Az Az

At the TFODODause Z= z!‘ro;

V

.., LI

7

ow
—'\?' LR a—}ﬂ

"'F sy =——<0)
= /'

N

At the Earth’s surface

-\=-—-->0
&

w

Tropospheric Vertical Velocity w and
Convergence/Divergence Variation with Height z

O\=-—<0

=Zp, —Az l u(zm_, -A7) > O;' n(zm; -A7) < UI ----- Z=2p, —Az

=0

|

DIVERGENCE Tropopause| CONVERGENCE
Rici Level of e
o I w(Z;p) > 0| Nondivergence | w(z,p) < Dl Swmking
=0 CONVERGENCE Surface DIVERGENCE
SFCL SFCH

ow ou Ov

e S=—| =+ =

0z ox Oy .
a—W:Owherew:wInalX and 6=0
Oz

This level is level of
non-divergence. It is found on

average near 550-600 mb.




Vertical motion

Typical profiles of

horizontal divergence

and vertical motion

A

—

§=V-V

-200
w
-~
~
~
/ l
/
-500
LND /-/5 -0
Ve
.
o 700
/
/
A -850
/
1
: l O s
w(kPas™)
* $ (s
p
(mb)

op 55

w 1s constrained to be zero at

5_0):_5:_E@u+@vj 0

the ground and at the tropopause.
If @ 1s nonzero, its sign 1s often the
same at all levels in a column in the
troposphere.

: ow
Then the sign of — must reverse

op
at some level. At this level,

8_&)20 = From (1) 0=0

op
This level is level of non-divergence.

It 1s found on average near 550-600 mb.

'l A quantity that is not routinely measured !!!!
Always inferred




Pressure tendency and Dines decomposition

Tendency: How a variable changes with time at a particular point or
locally, e.g., pressure tendency.

Pressure in a column is due to the weight of the air above

Lower the mass of the air above, lower the pressure

The hydrostatic equation 1s dp = —pgdz
p=g j pdz {z, =0 top of the atmosphere}

Local pressure tendency for a given air column with

thickness dz (assume the thickness 1s constant)

op Top
— d
(é%j 8 ZJ ot




a o0
Pressure tendency: (—pj = gj

Let us consider the mass continuity equation

op ~ 0 0 0
v pV)=—| = il Il

8t ('0 ) |:ax(pu)+ ay (,OV)‘l‘ 82 (pW):|

op t(Op op op Oz

As | — | = — | d —=- —=—pg—
S( tl g!( ot j : [az re ot pgat}
op)  [70 0 0

_tl = —g<\!a(pu)d2+£5(pv)dz >—g{!‘g(pw)d2}
op\ e, e, i

51 =—g- !a(pu)d2+ Ea(pv)dz >—g_!-d(pw)

) _ {0 (o - _~ [w=0 near the ground
(c’% l - gi'z“ ('bc('ou)dZJr'!‘('5)/('0‘))&)> S =0 {w= 0atz =oo
op\ T 0 T 0

2) - ‘g{!a“’”)d“!a(p")dz}
Local tendency Horizontal mass convergence

|



Pressure tendency: (6—]9) =g j a—'Oa’z

ot Ot
op e,
— | = — u dz + dz
( o j s {j e M) J }
Local tendency Horizontal mass convergence

Remembering that 90% of the mass of the atmosphere lies beneath

the tropopause and that we are treating the density as a mean density
for the air column (a constant), then it can be seen that, at a

synoptic-scale, surface pressure tendencies are directly related

to horizontal divergence patterns in the troposphere.

. . |0 ~
= For synoptic scale, one can write P_ 0g j V-V, dz

Ot




Dines compensation principle

Large scale motions 1n the atmosphere are in close hydrostatic balance. Hence the

pressure at the base of a fixed column of air 1s proportional to the mass of air in

that column; if the total mass decreases, so will the surface pressure, and vice versa

Dines showed that low-level convergence 1s very nearly equal to the divergence
at upper levels and pointed out that upper divergence must exceed the low-level

convergence when a low deepens

] %) o -
Surface pressure tendency equation: P _ gl V\pV)dz
ot 0
: ~ 1 A
Geostrophic: pV =—kxVp
f |~ unit area - 3= upper-level
0 - — — divergence
\ p, _ — - :
V- ,OV =0 - |~ p, = surface pressure - isallobaric
A < = weight of column convergence

< It follows that any local change in surface pressure 1s

associated entirely with ageostrophic motion.




Computation of w-adiabatic method Alternative: Quasi-geostrophic &

A second method for inferring vertical velocities, which is not so sensitive to errors in

the measured horizontal velocities, is based on the thermodynamic energy equation:

— -8 ,0===|,  where S = static stability (yd'y — 7 amient ], y = lapse rate
PE

If the diabatic heating O is small compared to other terms in the heat balance, we can write,

. 1 6T+M6T+V8T _ 1 £8T+VH-WJ
S,\ ot ox oy S,\ ot

— Because temperature advection can usually be estimated quite accurately in midlatitudes by

using geostrophic winds, the adiabatic method can be applied when only geopotential and
temperature data are available.

A disadvantage of the adiabatic method is that the local rate of change of temperature is required.

Is this method suitable for the tropical monsoon region? — weak temperature gradients and

strong diabatic heating are characteristics of monsoon region.

: : . : : oT
Unless observations are taken at close intervals in time, it may be difficult to accurately estimate —

over a wide area.

This method is also rather inaccurate in situations where strong diabatic heating is present,

such as storms in which heavy rainfall occurs over a large area.




Vorticity equation (Cartesian form) - z coordinates

0 (- . 0 o(ov O
Absolute vorticity = + [ = ov_ou + f Recall: a{k.(v XV)} B 84; B 5t(8v - 5u
ox Oy x Y
g(éu +u8u +v8u +W8u —fv+aa—p+Fx]:O (1) [specific volume o _1
oy \ ot ox Oy 0z ox yo,
g:li(ﬂlsin(p): ZQCOS¢EIB

a(@+u@+v@+m}@+ﬁt+ag—p+ﬂ]=0 (2) |0y adp
y

ox \ Ot ox Oy 0z a = radius of the Earth

Subtracting (1) from (2),

ou av)_[éw ov  ow 8uj_(8a op Oa ap%ﬁ.(w%)

a—g+\7-§§+wa—g+ Byv=—C+ )| —+— |-| —————
ot oz ox Oy Ox 0z Oy Oz Ox oy Oy Ox

d = owov owou | = ~ =
E(§+f):—(§+f)V-VH—[ax P aZjJrk-(Vpra)Jrk-(Vfo”.C)

Stretching Tilting Baroclinicity Friction

—> Rate of change of absolute vorticity following the motion

Non-divergent vorticity equation (RHS =0 _

(valid for barotropic atmosphere) ot




Non-divergent barotropic vorticity equation

with constant fluid depth H

In the case of a barotropic fluid (purely horizontal flow, w = 0)

%(mf): (€4 [V V| DO V) + k- (VXF,,)

Ox 0z Oy Oz

d — : : : :
z(é’ + f ) =0 = absolute vorticity conservation following the horizontal motion.
4

For horizontal motion, that 1s non-divergent, the flow field can be represented by

In the absence of sources such as

stream function () such that {u = _a_W,V — a_w stretching, tilting, baroclinicity,
v oy Vo Ox friction (non-divergent, barotropic,
inviscid fluid)
dy(C+)_6, o, K, I,
At ot Hy Ox Yy Ox Yy Oy B Absolute vorticity is conserved
following the motion
ﬁ(vzl/,)_ a_V/a_ngr(@l// 8§j+ oy Lﬁf] =0 T 10 h0gng)- 220050 _ g
Ot oy Ox ox Oy Ox |\ Oy o 400 p)=— =
0/, oy Oc Oy O¢ oy 0/, oy
—(V + = +|fl—=0 = |—(V +J(yw,c)+ f—=0
VR e il 5V i

The flow in the mid-troposphere is often nearly nondivergent on the synoptic scale, the
barotropic vorticity equation provides a surprisingly good model for short-term

forecasts of the synoptic-scale 500-hPa flow field.




Linear model

g = VZW T
o aw :
ot ( ) 'B =0 %

Llnear g

1 May 1987 JOHNNY C, L; CHAM AND R. T. WILLIAMS

J. Atmos Sci, Volume 44

Analytical and Numerical Studies of the Beta-Effect in Tropical Cyclone Motion.
Part I: Zero Mean Flow

JOHMNY C. L. CHAN* AND R. T. WILLIAMS .
Department of Meteorology, Naval Pesigraduate School, Monterey, €A 93943
(Manuscript received 30 August 985, in final form 10 November 1986)

Initial conditions
Axi-symmetric vortex
(no radial wind)

Non-linear model

0

at(Vzw)+J(w,g)+ ﬁ%—w=0

X

Nonlinear  Linear

Y-DISTANCE (*100 k

Westward dispersion

No vortex movement
t=72h

Yuyst)

t=0h t=36h

1: - T 1: -westward dispersiop ¢ ‘: \
2f g al g A
HEREC© : 4 (© ERLC)
e o / .
" K-DISTANCE (+100 km) T X-DISTANGE (100 km) T X-DISTANCE (+100 k)
b= 10 r,=100km v =40ms"
1 b
r r
V)=V | L lexpi—| 1-| =
L L
1 1 b
r r
cry=Zul oL lepd o[ 2
r, 2\ r, b v
STREAMFUNCTION ( NONLINEAR MODEL )

)= B I 5 b= o= 72, h
€ €
SF -
™ g ° e ®
0 w o w oo d b
& g &
=St z p 7/ effect Z -
i [ > :
=10 — -10 -10 L 1
-1¢ -5 0 5 1 [+] -10 =5 [+] 5 10 ~10 -5 10
X—DISTANCE (*100 km) X~=DISTANCE (*100 km) —DISTANCE (-100 km)
— — — -1
b= 10 r_ = 1000km v, = 400 ms

Northwest movement of the vortex



Divergence (stretching/shrinking) term

The divergence term represents the fluid analog to conservation

of angular momentum in rigid-body mechanics.

This represents the stretching (ﬂ > Oj or shrinking (d_w < Oj
dz dz
of an air column and its effects on Earth's vorticity and relative

vorticity.

Its effects are analogous to the increase and decrease in
rotational speed experienced by an ice skater whose arms

are brought in or are extended outward;

A purely convergent flow field acquires cyclonic relative
vorticity from the Earth's vorticity as the air is accelerated

to the right in the Northern Hemisphere by the Coriolis force
(and to the left in the Southern Hemisphere). Similarly a purely

divergent flow acquires anticyclonic vorticity.

Coriolis force (small vectors), convergent/
divergent wind field (large vectors)

;:—:—\ Cl é -88f<>oo \\ /<
Sl s e

E:} L \\\/:,,

.

(c) e {(d)

B 8u+8v _dw ﬂ
ox Oy dz

ow OV B ow Ou
Ox 0z Oy Oz

a¢ _ _
dt (6+/)o

+lA<'(Vp><Va)+lz'(V><F

—

fric

)

U
H

V.V, <0



Tilting/twisting

(a) Suppose that initially the vorticity vector (V x V) points
in the x - direction owing to a decrease in v with height.
Suppose also that there 1s a rising motion and sinking

motion at large and small values of x, respectively.

oV
% Y

ov

— <
Twisting o~

s s
VXV

—— X
Then the vorticity vector will become tilted about the y-axis, / o)
a
(b) so that the vorticity vector becomes more aligned
with the z - axis. Thus, the vorticity about the x-axis h 5 L.
. . o \ v xv Tilting
been converted into vertical vorticity. ) .
Mathematically, the tilting term in this case | CE/%T
= y 7 a
- | w
i a—VxVW - Ov Ow  Ou Ow //QYQI) a_>0
Oz Oz Ox 0Oz O | -
e
(b)
dé - owov owou) - ~ =
P ~(§+/)V-Vy _(ag_ag}rk‘(Vvaa)+k'(VXFﬁic) Critical for
tornadoes

Vertical shear in the horizontal motion is going to twist

Horizontal shear in the vertical motion is going to tilt




Vorticity equation - Tilting/twisting term
Vertical shear in the horizontal motion is going to twist
Horizontal shear in the vertical motion is going to tilt

B 8w8v_8w8u
Ox 0z Oy Oz

a_w>(), a_u>0
oy 0z z
d

E(g+f)>0

twisting arises due to vertical shear X
in the horizontal motion, and horizontal %

shear in the vertical motion

d ~ [Oowov oOwdu
E(§+f)——(§+f)V-V—[ax oz oy 82]

+ﬁ-(Vpra)+ﬁ-(Vforic) 7




Solenoidal or baroclinicity

dC

. Vp v
AN \ AY
cool ~ . warm AN
Py % - S
N G 2
water land
(@) Day
—
p, -
24}

i —”(Va xVp)-dA
A

: dC :
Solenoidal term: = = —‘Va‘ ‘Vp‘ sin
If the atmosphere is barotropic
k- (VpxVa)=0
Pressure and density surfaces lie

on each other

If the atmosphere is baroclinic

ﬁ-(Vpra)>O = cyclonic

a, .7 Vo a
A 2 ‘ . ﬁ-(Vpra)<O = anticyclonic
g < ,’6 - — .
L b ¢Vp . Pressure and density surfaces do not
warm o - ool lie on each other. Solenoidal term
p() 7 < 7 < 7 . . .
. . . acts as a circulation mechanism to
s land ac <0 bring the pressure and density surfaces
(b) Night dt lie on each other
In general the circulation that develops
would be such that the density and d .~ (v . . .
pressure surfaces would become parallel —(s+/)==(c+/)V-Vy-k- re xVw |+k-(VpxVa)+k- (V % Ffriczion)

(baroclinic w==) barotropic)

dt

Stretching

z

Tilting Solenoidal Friction




Effect of friction| Example: western boundary
[llustration of frictional generation of vorticity curren t S i n th e ocean

alongside a wall

Geostrophic wind = constant

(a) Air is forced to flow (solid-line vectors) along the
edge of a vertical wall (hatched area). Friction
(dashed vectors) acts in the direction opposite to that

of the wind; the magnitude of the friction force is

(a)

greatest along the edge of the wall, and decreases
in magnitude with distance from the wall. Thus the

wind is slowed down the most along the wall. l

(b) and least away from the wall. y N-S wind component
due to friction

In this figure, K - (V x F m) >0
(b)

—

ilf (£ f)V -V, +k- ";_:xw; FR-(VpxVa)+k-(V

Stretching Tilting Solenoidal Friction

friction )




. Vorticity equation (Cartesian form): (x,y,p,t)

.. ov oOu dp
Absolute VOl’thlty| =l = | T f , =—- geopotential height (h=®/g)
b ox Oy dt . o
p — height of isobaric surface
D from the sea level 490 hPa
9 —+ua—u+va—u+a)a—u—fv+0—+Fx =0 (1) /°°
ay Ox ay 5]9 Ox P T ol " 510hPa
0 ov ov ov oD g _7 p szsgéo-metric
—| —4u—F+v—Fo—+ fu+—+F |=0 (2 ¢ ‘ .
Ox Ox ay ap f ay y ] ( ) / height (z)
_ North Pole sea level Equator
Subtracting (1) from (2),
8_§+‘7H -§p§+a)a—§+ﬁv: —(§+f)V-\7H + v oo Owlu +1A<-(V><17“fm.c)
ot op Op Ox Oy Op
Absolute vorticity (p-surface) _ o o o
, , Stretching Tilting/Twisting Friction
following the motion

Advantage: Solenoidal/baroclinity

terms are implicit




s direction is parallel to flow, positive in direction of flow

n direction is perpendicular to the flow, positive to left of flow.

Calculate circulation

natural coordinate
viewpoint

Denote the distance along the top leg as os

Denote the distance along the bottom leg as &s + d (Js)
Denote the velocity along the bottom leg as V'

Note: only curved sides of this box will contribute to the

circulation, since the wind velocity is zero on the sides

in the n direction.

Using Taylor's expansion, velocity along the top: — (V + Z—V&z
n
d (5s) = O0ffon
— oV
C=[ﬂV-dl=V(5s+5,6’5n)—(V+—5n os
on
ov V' |curvature
C=Vopon —Eé‘né‘s R vorticity
£ = Lim ( C j:V%_a_V:K_ﬁ_V v _ shear
onds—>0\ Snos ds on R on|g, vorticity

J

Vooor
6 = R On
Ve
\\/ =
%




Physical interpretation

Can purely straigthline flow have
non-zero vorticity?

Where would this occur in the real
world?

ov ou
c==-2
ox Oy

Can curved flow have zero vorticity?

!
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g
c>0

(B) Curvature

_V_@V
R ¢Cn

BThe COMET Program
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The COMET Program/EUMeTrain
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Remember: For adiabatic motions
¢ =¢ + f is conserved for 2D

inviscid barotropic fluid motions

In stratified (baroclinic) 3D fluid,

equivalent 1s potential vorticity

potential for

c (@ej .
q = = |generating
o\ Oz

vorticity




Potential vorticity in barotropic fluids

A model that has proved useful for elucidating some aspects of the horizontal structure of large-scale

atmospheric motions is the barotropic model. In the most general version of this model, the atmosphere
1s represented as a homogeneous incompressible fluid of variable depth, A(x, y, t) = z, - z, where

z, and z, are the heights of the upper and lower boundaries, respectively.

In a barotropic (incompressible) fluid, the vorticity equation (combined with the continuity equation) for
can be written as:

d _ T ow _ w(z,) —w(z,)
dt(g+f)— (c+f)V-Vy (§+f)az (c+f) ;

B+ )=o) B | )2

d _ldh d _ d. (c+f)_
(g+f)— = ln(g+f) 7 :dtln( P j 0

%m ( 1 ; A ) =0 implies that %[ 3 ; / ] =0 BAROTROPIC VORTICITY EQUATION

n= T: potential vorticity = potential vorticity is conserved following the motion in a barotropic

atmosphere. This is also called 'Rossby potential vorticit)'.

For baroclinic fluids, potential vorticity is a function of all dependent

variables of the fluid (V,8 and p).




Conservation of potential vorticity is the air’s equivalent of the conservation of angular momentum

POTENTIAL VORTICITY IN A BAROTROPIC FLUID

%[%} 0o When a spinning ice
il | | . o Skater has her arms

= 2—=1is conserved following the fluid parcel in a barotropic fluid Spread out [atera”M she

POTENTIAL VORTICITY IN A BAROCLINIC FLUID spins slowly. When she

On isentropic surfaces, contracts her arms, her

P=—g(g+ f)% (Ertel's potential vorticity) rate of spin accelerates.

P is conserved following an air parcel in adiabatic flow, and is therefore a good tracer of air parcels under
conditions where diabatic heating (latent heat of condensation, radiation, etc.) can be neglected.

S I
6+A0 (T
<~y dll| | |lp
divergence T
0+A0 Y -
<'I|.. —¢>
<."'- _....-i'> .‘-‘
I A convergence ( )
e N ;: > "--.__‘__’—a
spread 0 k L
stretched

When air converges, the column stretches. To maintain potential vorticity,
the air spins faster (vorticity increases), resulting in the stretched vortex on
the right. Divergence, on the other hand, causes vortex spreading and slows o
down the rate of spin.



Generalized potential vorticity equation

The concept of potential vorticity (usually denoted by a variable ¢) was generalized by Ertel, during

World War II, to include the complete 3D vorticity vector. Ertel's now-famous analysis, however was

apparently done independently of Rossby's work.

Ertel's work included the effects of friction and diabatic heating, the potential Compressible

vorticity equation was formulated with height as a vertical coordinate. fluids

: .. 1
Equation of motion in 3D %V (V V)V jk xV — —Vp - gk +F
t P

friction

: e - - 1 /=
Using the vector identity, (A : V)A = EV(A ) (V X A) = arbitrary vector, and let ® = gz
.0V - _ 1 =) 1
We can write, N =Vx (V xV + jk) V(CD +—=V- VJ -—Vp+ Fﬁmon (1)
ot 2 o,
The differential form of thermodynamic energy equation is 7ds = ¢ dT — ap < TVs-dr=c, VT -dr - le -dr
P P
s = specific entropy per unit mass =c,In@; dr = dxi + dyj +dzk
1 L . . =~
It follows that TVs—c¢ VT = —;Vp, substituting this in (1), we get absolute vorticity VxV + fk =,
oV - l- -
=Vx(VxV+ fk)-V e, +_V-V +TVs +F,,

R
[ v]=v [ (VxV+jk)J—V><VCD ATV V|| 4V TVs +VxEy,

READ Sec. 3.8 of
Atmospheric dynamics - Mankin Mak (2011)



Generalized potential vorticity equation

9
o

[VxV]=Vx| Vx(Vx Vi k) |+ VxTVs + V

Following the vector identities
Vx(AxB)=A(V-B)-B(V-A)-(A-V)B+(B-V)A

V(Aﬁ) :(E°V);&+(;&°V)]§+I§X(VXA)+AX(VXE)

VX(CA)zcva+vch, V.-VxA=0,VxVa=0

8(2:\7) =—(VxV+fk) V-V-(V-V) (vxV+le)+[(VxV+fﬁ)-V]V+VTXvS+Vx13,-m,-on
PV )= (VY 4 ) V]V S0V ) VTV 4 V5,

Dividing both sides by p
li(vaJrﬂ})—id—p(VxVHﬁ)=l[(V><\7+ﬂ%)-v}\hivnvﬁlwi g

p dt p’ dt p p p

Vx\7+ﬂ;.vs

Define the Ertel's potential vorticity by g, ¢ =

dt i

dq o d[VxV+ij+VxV+jk_ivS
p P dt

4 ys=v% +(\7 : v)vs
dt ot




Generalized potential vorticity equation

0

Vi— ! VT xVs+— ! V xF

(@)

Define the Ertel's potential vorticity by ¢,

q:

dt yo,
dys-v®, +(V-V)Vs
dt ot
(V-V)Vs=V(V-Vs)=(Vs-V)V-Vsx(VxV)
d ds
EVS = VZ+(VS V)V st(VxV) (iii)
Substituting (iii), (i) in (ii)

yo,
%:W d[VxV+ka VxV+ fk de i

VxV+ﬂ2.

P P
Given that, VS-lVTXVSZO and using iQ=§=c dind
Yo, T d " dt
dg 1

@:VS'{(l(VXV'i_J‘];)' }V+1VTXVS+1VXFUCHOH:|
dt P

friction P
%ﬂ; Vi x (V X \7)

dt—p{VS-[(VXV+ﬂA{)- ]V+VS VxF } LYV

0

VxV+]k (

t

friction
Jo,

j+(vs V)V —Vsx(Vx \7))



Generalized potential vorticity equation

dg_ 1 | DV o[ Q) TV, (g )y
e p p T p

{vs-[(w\"uﬂ})-v]\hvs-vxi

friction

%ff('VSX(VXV)

It is a vector property that Vs - (V xV - V)V = (V X \7) (Vs-V)V

It is left as an exercise for the reader to verify that Vs - (jﬁ : V)\7 —/k-(Vs-V)V - fk-Vsx (V X \7) =0

Upon substitution,

ﬂzlvs-wiﬁm +1(Vx\7+ﬂ§)-v(% =ivS-V><Fﬁ,.m.0n L9, .V(Q]
. p ‘ p r) p p r
dq

For frictionless, F

friction

=0, and adiabatic 0=0 = ) =0 (Rossby's potential vorticity equation)
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The derivation is valid even if the atmosphere is non-hydrostatic as the derivation did not make use of

hydrostatic assumption. Thus, the equation for Ertel potential vorticity (¢) has broad applications

for flow in the atmosphere. absolute vorticity VxV + 7k = 0,

g of a fluid parcel would increase if

(1) the gradient of heating has component in the direction of absolute vorticity vector @,

(1) the curl of the frictional force has a component in the direction of the gradient of potential temperature.

Rossby, C. G., (1940): Planetary flow patterns in the atmosphere. Quart. J. Roy. Met. Soc., 66, 68-87.
Ertel, H., (1942): Ein Neuer hydrodynamischer Wirbelsatz. Met. Z., 271-281.



PV of a compressible fluid

—
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s = ¢, In@ = specific entropy per unit mass

q = Ertel potential vorticity of a compressible fluid
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< q= —g(§+f)9%= constant.

q 1s often referred to as the [PV

dq:d (TJa-VQ _(Ba‘VQ+vg.<vxi‘fiiction)
dt  dt yo, Jo, yo,

The PV of a fluid parcel would increase if

and/or

(a) the gradient of heating has a component in the direction of the absolute vorticity vector

(b) the curl of thefrictional force has a component in the direction of the gradient of &.

q is conserved under adiabatic and inviscid conditions




Why vertical component is important
for synoptic scale motions?

0 ' VxF,
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¢, In 0 = specific entropy per unit mass.

S =
®, Vs
Yo,

q is conserved under adiabatic and inviscid conditions.

q= = Ertel potential vorticity of a compressible fluid,

For large-scale atmospheric motions,

Vertical Horizontal
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This suggests that the vertical component of @, is rather important for large - scale (synoptic scale)

motions.

Therefore, a simplified Ertel's formula can be written as follows:
_0,'VO w00 (+f00
 p  pa  p
q 1s often referred to as the "Isentropic Potential Vorticity (IPV)"

q < g=—g(l + f)?z constant.
/4

The potential vorticity is a quantity that is related to the absolute vorticity (0, ) and the stratification

(V0) that is materially conserved in the absence of friction or diabatic heating.




Use of potential vorticity

The real atmosphere is usually baroclinic, so it is more appropriate to use conservation

of Ertel's potential vorticity.

=-g(c+ f)—— -gC . ,— 0 = ¢, = component of absolute vorticity
op op

normal to an isentropic surface. P is also referred to as the isentropic potential vorticity (IPV)
If the flow is adiabatic, any change in IPV must be due to the advection of IPV.

If the flow is not adiabatic, IPV can be used to diagnose where and when the diabatic

processes are acting to influence the flow.

Since diabatic processes are associated with creation and destruction of PV, the
Lagrangian rate of change of PV is

dq do
i ICR Pw ( dt

positive.

) <> PV is increased when the vertical gradient of diabatic heating is




What is barotropic or baroclinic?

— The atmosphere is both barotropic and part baroclinic. Barotropic is very consistent, no air
masses, no fronts and is characteristic of the "tropics”. Baroclinic is much more variable.

Different air masses, cold fronts, development of cyclones. Baroclinic is characteristic of extra-
tropical regions.

* BAROTROPIC

— Region of uniform temperature distribution; A lack of fronts. Everyday being
about hot and humid (with no cold fronts to cool things off) surroundings
would be a barotropic type atmosphere. Part of the word barotropic is tropic.
The tropical latitudes are barotropic as there are no fronts in the tropics.

* BAROCLINIC

— Distinct air mass regions exist. Fronts separate warmer from colder air. In a
synoptic scale baroclinic environment you will find the polar jet in the

vicinity, troughs of low pressure (mid-latitude cyclones) and frontal
boundaries.

— There are clear density gradients in a baroclinic environment caused by the

fronts. Any time you are near a mid-latitude cyclone you are in a baroclinic
environment.

— Part of the word baroclinic is clinic. If the atmosphere is out of balance, it is

baroclinic, just as if a person felt out of balance they would need to go to a
clinic.



http://www.theweatherprediction.com/tropical/
http://www.theweatherprediction.com/habyhints/100/
http://www.theweatherprediction.com/habyhints2/457/

Barotropic and baroclinic

, With solenoidal
7 a No solenoidal Za VT X Vp # 0
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A barotropic atmosphere is one in which An atmosphere in which density depends
the density depends only in the pressure, so  on both temperature and pressure is called

that isobaric surfaces are also surfaces of an baroclinic atmosphere.
constant density.
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Temperatures in a barotropic environment are
homogenous and uniform. Warm and humid
throughout the year with little fluctuation in
temperature.

In a barotropic environment in the tropics there

1s NO advections such as cold air advection or

warm air advection,

= No fronts such as cold or warm fronts, nor

any occluded fronts are present here.
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Baroclinic motions :

Temperatures in a baroclinic environment
are heterogenous — which means large
temperature differentials.

Lower and upper troposphere communicates

with a finite vertical velocity.

In a Baroclinic environment the upper levels (500
mb and above) are characterized by large WAVES —
Ridges and Troughs. Primarily the Polar Jetstream
governs the troughs and Ridges



Taylor-Proudman Theorem

[f the fluid 1s homogeneous (p uniform) then, the geostrophic flow 1s two-dimensional

and does not vary in the direction of the rotation vector, €2.

If p and f are constant, then taking e

the vertical derivative of the geostrophic

(u Vv ): Li_o ,Gp — |flow components and using hydrostatic
80 fpl oy ox

ou, ov
balance, we see that £, —=
Oz Oz

If the flow is sufficiently slow and steady (Ro << 1) and friction

is negligible, then [2QxV + le + gﬁ =0
P

, ~ 1 A The Taylor-Proudman theorem,
Taking the curl | Vx{2QxV +—Vp + gk |, we find that o
Jo, states that slow, steady, frictionless

if the fluid is barotropic [i.e., one in which p = p(p), then flow of a barotropic, incompressible

( 0. v)\? 0. fluid 1s two-dimensional and does

. , , o o . .| |not vary in the direction of the
Since -V is the gradient operation in the direction of Q, i.e., k

rotation vector Q

oV . .
= . = 0 < barotropic = no vertical shear
Z
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Cross-section of the zonally averaged 1sopycnals plotted against pressure for the NH
winter (1998.2010: December.February).

(a) Extratropics:

600

pressure (hPa)

— In the middle latitudes, in the vicinity of the westerly maximum, the atmosphere is
highly baroclinic, as indicated by the large angle between the p and p gradients
(vectors Vp and V).

—> In the tropics, however, the gradients are almost parallel, indicating a lack of

baroclinicity. The root word of Barotropic 1s tropic.
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Baroclinic vs. Barotropic

Barotropic Baroclinic
p=p(p) only p=p(p,T)
Implications: Implications:

1) isobaric and isothermal surfaces
coincideVpxVa =0

2) no vertical wind shear

(thermal wind = 0)

3) no tilt of pressure systems with
height

1) isobaric and isothermal surfaces
intersect VpxVa #0

2) vertical wind shear
(thermal wind # 0)

3) pressure systems tilt with height

Seasons: Atmosphere is most baroclinic in winter.
Atmosphere is least baroclinic in summer.

Geographic: Atmosphere is most baroclinic in midlatitudes
Atmosphere is least baroclinic in the Tropics

Baroclinic flow



Equivalent Barotropic System

* Barotropic systems are characterized by a lack of wind shear
(temperature is uniform, no temperature gradient). Usually,
in operational meteorology, references to barotropic systems
refer to equivalent barotropic systems - systems in which
temperature gradients exist, but are parallel to height
gradients on a constant pressure surface. In such systems,
height contours and isotherms are parallel everywhere, and
winds do not change direction with height.

While some systems (such as closed lows or cutoff lows) may
reach a state that 1s close to equivalent barotropic, the term
barotropic system usually is used in a relative sense to
describe systems that are really only close to being equivalent
barotropic, i.e., isotherms and height contours are nearly
parallel everywhere and directional wind shear is weak.




What is equivalent
barotropic?

In the atmosphere the isotherms
are sometimes parallel to the
height contours. Often times
meteorologists say “barotropic”
when they really mean “equivalent
barotropic”

> If the isotherms are very widely spaced then
the region or level is close to barotropic.

» If the isotherms are parallel to the height
contours then the region or level is
equivalent barotropic.

» If the isotherms cross the height contours
the region or level is baroclinic

Variation of wind with height is vertically
averaged assuming that the thermal wind is
in the same direction as the geostrophic wind
at all heights

Figure 4: Example of 85(ffmb heights and 1000-500 mb thicknesses.

The low over Kansas at 850 mb is nearly equivalent barotropic since
the height and thickness lines are nearly parallel

CONSIanI pressure surface CaRSIant pressure surface

Barotropic

amm surface

canstant density surface

Baroclinic




BAROTROPIC LONG WAVE

Equivalent barotropic:

» Thermal/contour trough axes in phase.
» Thermal/contour ridge axes in phase.
» Longwave troughs - cold core

» Longwave ridges - warm core.

Baroclinic:

The state of the atmosphere where
isotherms exist on isobaric charts
and these isotherms intersect the
height contours (i.e., isotherms and
height contours are “out-of-phase”
with one another).

Vertical shear is allowed. Wind
direction changes with height, and is
usually accompanied by speed
changes.
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Equivalent barotropic:
Weak wind shear and directional change

Tropics: height contoyrs and thickness contours are spread very far apart
Note that equivalent barotropic low near the Philippines.
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F1G. 12. Schematic diagram of the formation of baroclinic and barotropic structures in the NH tropics. (a) Deep convective heating is
balanced by adiabatic cooling associated with ascent. Divergence above the maximum ascent gives an anticyclonic vorticity tendency
there, and convergence below gives a cyclonic vorticity tendency there. (b) The g effect leads to a westward drift both above the heating
maximum and below it. A steady situation is reached when the upper equatorward motion and the lower poleward motion are in the
longitude of the ascent, giving a baroclinic structure in the vertical. (c) In the presence of strong westerly shear and upper-tropospheric
westerly winds relative to the motion of the convection, zonal advection can dominate the 8 effect there and lead to eastward displacement
of the upper wave. If the g effect still dominates for the lower wave, the resulting structure is equivalent barotropic.
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Summary: Vorticity and Circulation

Vorticity is defined to be the curl of velocity, and normally denoted by the symbol @

The three-dimensional vorticity vector is given by:

i j Kk

PRSP KAl N el +j(a_”_a_Wj+lz v _ou
ox Oy 82 oy Oz Oz Ox ox Oy
u v ow

In atmospheric and oceanic sciences, we are primarily concerned with circulations in

the horizontal plane, vorticity implies the vertical component (unless otherwise stated.)

. Ov Ou .. : :
¢ =k-@=———(vorticity has the units analogous to "rotations" per second).

ox Oy

Circulation is defined to be the integral of velocity around a closed loop C = mff -dl

The circulation round any reducible closed curve is equal to the integral of vorticity over
an open surface bounded by the curve and, equivalently, 1s equal to the strength of the
vortex-tube formed by all the vortex lines passing through the curve.

C= mv-dl: J- (VXV)-ﬁ dA

line Area




Circulation Theorems

» Bjerknes: Absolute circulation is changed by solenoidal term
» Kelvin: Absolute circulation is conserved in barotropic fluids

dt_dt

dac _d [_ﬂ{] A In a barotropic fluid, p = p(p) therefore an exact differential| << Kelvin's theorem
In a baroclinic fluid, p = p(p,T) |Not exact differential| < Bjerknes theorem

Kelvins circulation theorem

Jado =[f)1 (o =0 == =0

[_ﬂ dp _ 1 B 1 ~0
p(p) p(p,) p(p)
circulation conservation

C, =C._ T(2Qsinp)4 = constant

states that the circulation around a closed curve moving with a frictionless,
barotropic fluid (no solenoids) is constant < ¢ + f = conserved, gives rise
to Rossby waves in barotropic fluids

= If baroclinicity arises, solenoid brings the conditions back to barotropic

through a closed path of circulation

Bjerknes circulation theorem

Cf{—f:—RLj(VTxVInp)-dA

(VpxVa) = solenoidal term

In a baroclinic fluid [J]d—p =—[[RTIn p
Yo,

ci—f :”(Vpra)-dA =”|V0¢||Vp|sin,6’ dA
A A

Change of circulation is by baroclinicity

Lower density

C,=C +(2Qsing)4

rel

1A

Higher pressure




THE BJERKNES’
CIRCULATION THEOREM

A Historical Perspective

BY ALan |. THorre, Hans VOLKERT, AND MicHAL |. ZiEMiatisk

Other physicists had already made the mathematical extension of Kehin's theorem to
compressible fluids, but it was not until Vilhelm Bjerknes' landmark 1898 paper that
metecrology and oceanography began to adopt this insight.

Bulletin of American Meteorological Society (2003),
Pages 471-480



