

Operational HWRF Modeling System -2021

A Collaborating effort between MoES-NOAA IMD, NCMRWF, INCOIS and EMC

> Ananda Kumar Das NWP Division मारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

Progress in HWRF Modeling System

Years	Domain Configuration	Data Assimilation	Ocean Coupling
2019	Triple nest (18x6x2 km) with enhanced domain size 4 times a day	GSI (hybrid-EnVar) assimilation (80 members) with 6 hourly cycle in cycling mode	Coupled with HYCOM model + NCEP coupler – Ocean initial state from RTOFS (regional HYCOM) of INCOIS
2017-2018	Triple nest (18x6x2 km) 4 times a day	GSI (hybrid-EnVar) assimilation with 6 hourly cycle in cycling mode	Coupled with POM model + NCEP coupler
2012 to 2016	Starting from Double nests (27 x 9 km) twice a day To Triple nests (18x6x2 km) 4 times a day	GSI (3DVAR) assimilation without cycling (cold start mode) To GSI (3DVAR) assimilation with 6 hourly cycle in cycling mode	No ocean coupling

HWRF Coupled Modeling System

HWRF Modeling System with GSI Data Assimilation

INDIA METEOROLOGICAL DEPARTMENT

HWR	HWRF Operational Configuration				
Domain-Parent	Center Storm Center Size:- 80° X 80°				
	Grid Spacing:- 18 Km Grid Points:-288 X 576				
Intermediate Nest	Center:- Storm Center Size:- 24 ⁰ X 24 ⁰				
(Moving)	Grid Spacing:-06 Km Grid Points:-265 X 532				
Inner Most Nest	Center:-Storm Center Size:- 7 ⁰ X 7 ⁰				
(Moving)	Grid Spacing:- 02 Km Grid Points:- 235 X 472				
Map Projection	Rotated Latitude and Longitude				
Vertical Levels In Hybrid					
Pressure Sigma Coordinates	61				
Top Boundary	10 Hpa				
Cloud-Microphysics	Ferrier-Aligo Cloud Microphysics				
Radiation	Rapid Radiative Transfer Model For General				
	Circulation Models (RRTMG)				
Surface Layer Physics	Modified Geophysical Fluid Dynamics Laboratory				
	(GFDL) Surface Layer				
Surface Flux Calculation	The Monin-Obukhov				
Represent The Land Surface	The Noah Land Surface Model				
Planetary Boundary Layer	Boundary Layer Global Forecasting System (GFS) Eddy-Diffusivity Mass				
	Flux				
Cumulus Parametrization	Scale-Aware Arakawa-Schubert				
भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT					

Ocean Coupling

- A: sea surface temperature (SST)
- **B: 1. Precipitation**
 - 2. Atmospheric pressure
 - 3. Heat fluxes Sensible, latent, total and net shortwave radiation
- 4. Wind stress

भारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

Ocean Coupling

GDEM monthly climatology

3D ocean:

Ocean Coupling

	ΡΟΜ		НҮСОМ		
Dynamics &	Hydrostatic, free-surface, primitive equations on C grid				
Configurations	1/12-degree				
	Rectangular Projection		Mercator Projection		
	40 vertical sigma level	41 ver	tical Hybrid isopycnal-Z levels		
Mixing Physics	Mellor-Yamada 2.5 closure	KPP	(K-Profile Parameterization)		
Initialization	Initialization Monthly GDEM3 Climatology + daily NCEP SST + Feature Model		ourly HYCOM analysis from INCOIS-RTOFS		
Lateral Boundary	Adjusted T/S fields	6 hou	rly 2D and 3D INCOIS-RTOFS forecasts		

Following files are provided by INCOIS for HYCOM run:-

1. RestartFiles - rtofs_glo.t00z.n00.restart.b/*.a

2. archv Files - rtofs_glo.t00z.n00.archv.b/*.a (n-24 through <all forecast hours> every 6 hours)

3. archs Files - rtofs_glo.t00z.n00.archs.b/*.a (n-21 through <all orecast hours> every 6 hours)

*.a Binary data files, *.b ASCII files describing *.a binary files.

INCOIS data files size in a single cycle for 4 days forecast is 11 GB.

मारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

HWRF-GSI Data Assimilation

Forecast verification of Cyclones: 2019

भारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

Forecast verification of Cyclones: 2019

भारत मौसम विज्ञान विमाग INDIA METEOROLOGICAL DEPARTMENT

A Few Points for Operational HWRF-HYCOM Modeling System

Atmospheric Model:

- > Initialization for weaker storm (without any TCVITAL information)
- Improvement in rainfall prediction (rainfall over land region)
- > Improvement in intensity prediction (reduction of overestimation)
- Physics to represent land-air-sea interactions at high-resolution Atmospheric Data Assimilation:
- Start of cycling well ahead of the system to become cyclone
- Emphasis on non-conventional observations (i.e. radar radial wind, reflectivity and satellite radiances)
- Instead of global rather use of regional ensemble perturbations for EnVar Ocean Coupling:
- > Use of IMD-GFS for regional ITOPSI of HYCOM model at INCOIS
- > HYCOM coupling with HWRF well ahead of the system to become cyclone
- > Effective coupling with shorter time interval preferably at every cycle

THANK YOU

भारत मौसम विज्ञान विभाग INDIA METEOROLOGICAL DEPARTMENT