

HPC-enabled Urban Integrated Modeling: Challenges and Solutions

Sahidul Islam, Sumita Kedia, Santosh Kulkarni, Pallavi Gavali, Neelesh Kharkar, Palash Sinha, and Manoj Khare Centre for Development of Advanced Computing (C-DAC)

Centre for Development of Advanced Computing (C-DAC) Pune

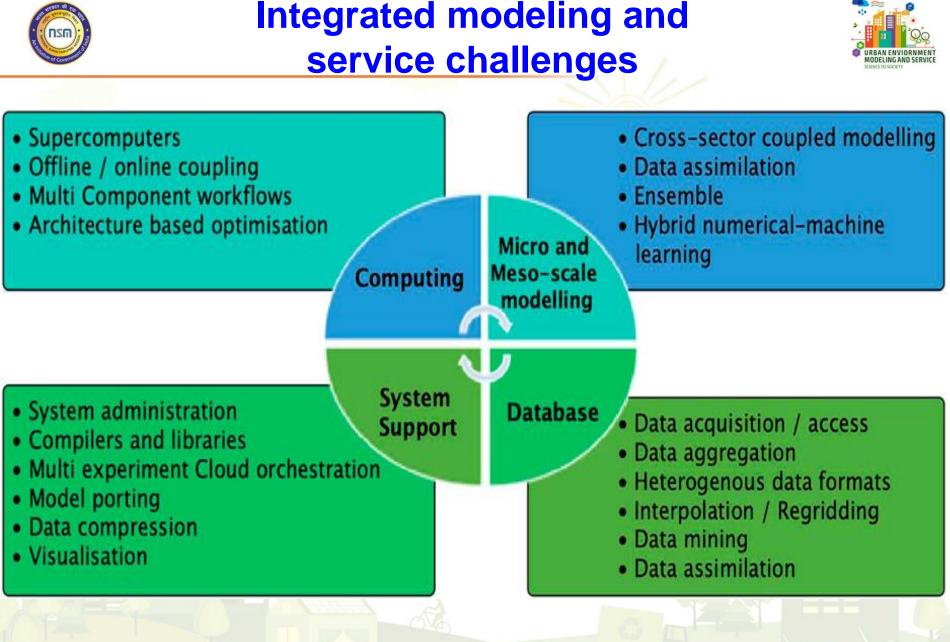
National Symposium on Understanding the science of heatwaves under the warming scenario and challenges ahead

> 19 March 2024 IITM Pune

- Background
- Challenges and objectives
- Consortia Programs
- Methodology/Approach
- Integrated/Coupled modeling
- Work done
- Conclusion

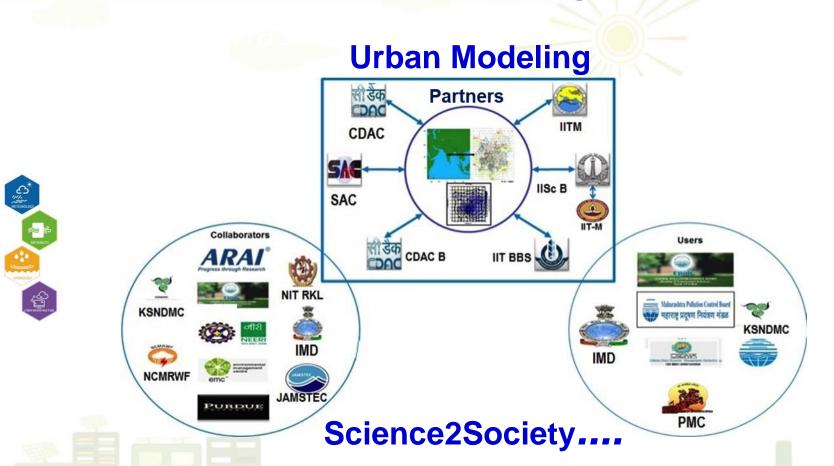
Background

- Global urban population projected to be double by 2050
- Rapid urbanization the driver of economic growth but has environmental challenges
- Need to understand, simulate, and disseminate information about extreme events, city operations, and planning decisions



- Individual data/information are available with various agencies, but it needs to be curated for specific services
- Urban environment is a co-dependent system requiring inter-operable data, products, scientific methods, decisions and impact information at one place
- Citizen centric urban environment services using scientific data
- Multi stake-holder, multi-sector access to a common platform for any city
- City data access for research / end user usage
- Uniform standard operating procedures for data, modeling and DSS applicable to all cities – avoiding duplication of city ICT efforts/cost

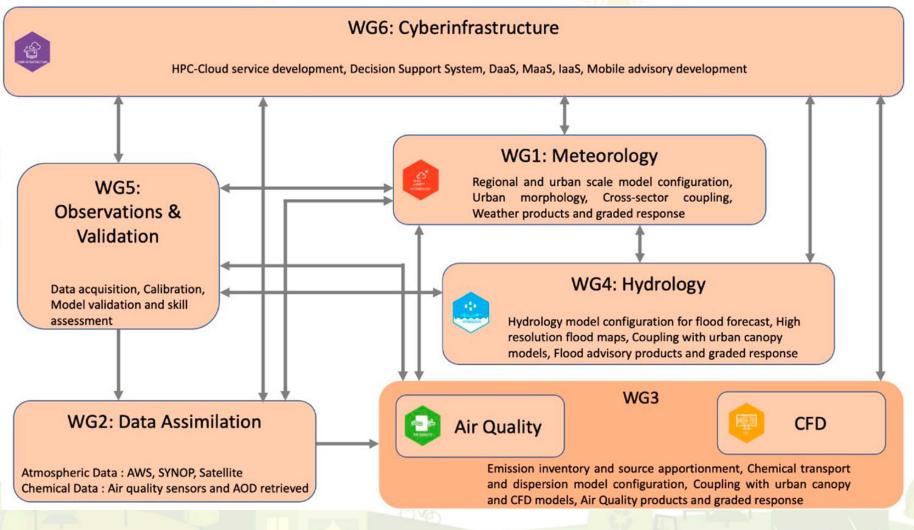
Kaginalkar et al., 2022, BAMS, 103



- An effort to frame an interdisciplinary community of meteorology, hydrology, air quality, and computer science (e.g., WMO, 2019)
- Form a consortia program, under the aegis of India's National Supercomputing Mission (NSM) to develop an ecosystem "Urban Environment Science to Society" (UES2S) - a science gateway for community research and end-user service
- Study and prediction of urban events involve multiscale observations and cross-sector models, heterogeneous data management, and enormous computing power
- Design HPC-based science cloud platform for urban environment and data science, stakeholder applications, and decision-making
- Facilitate urban researchers with modeling and technology platforms for tailored end-user services

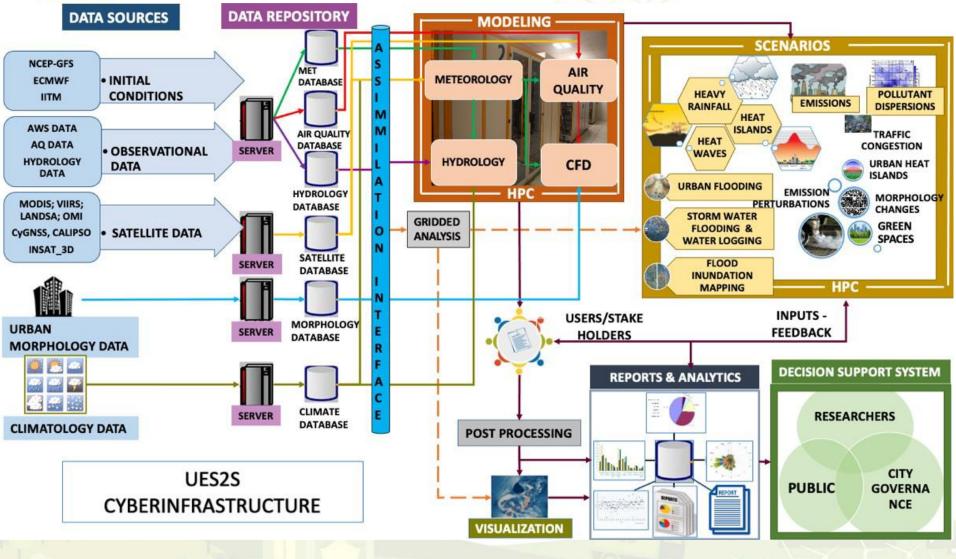
Partnership Formation – Framework Development

A framework promoting sustainable goals and resilient Indian smart cities through science and ICT



Partnership -Research and Technology Work

urban-scale environment model forecasts and technology groups



Kaginalkar et al., 2022, BAMS, 103

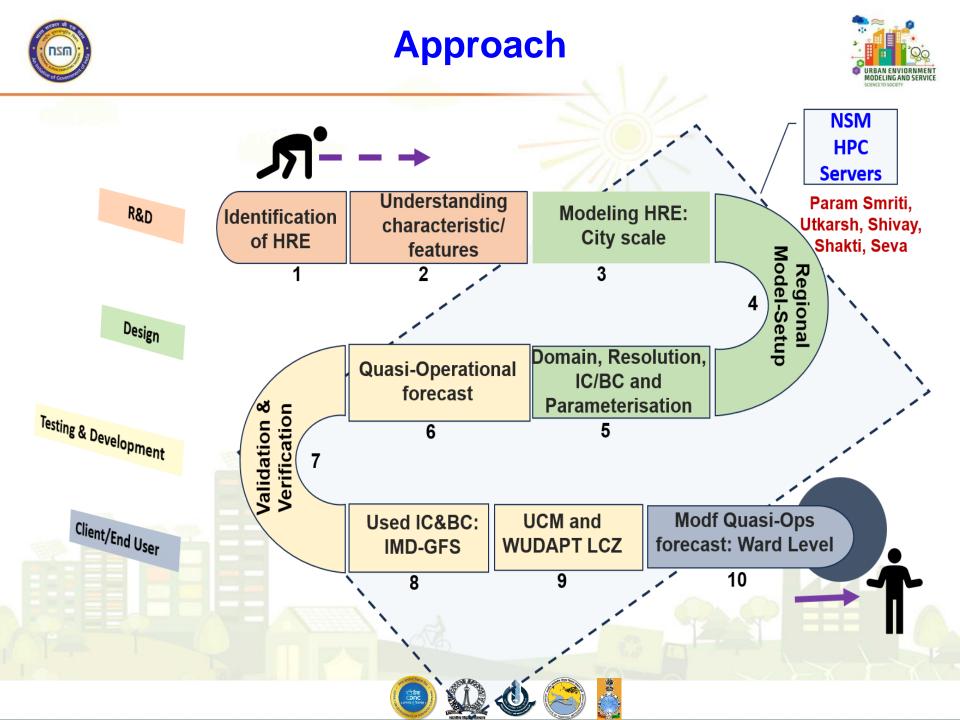
System Overview

Philosophy Integrated Urban Modeling

Cyberinfrastructure

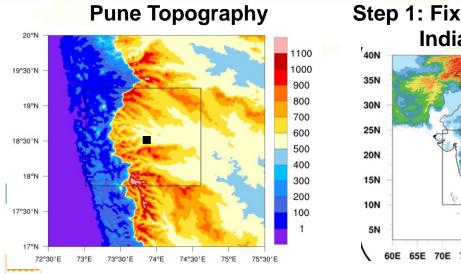
- Data
- Tool
- Technologies
- Model

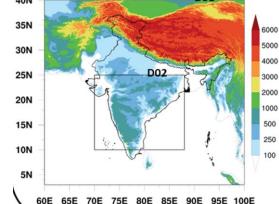
Research


- Basic urban Processes
- Physical & Chemical weather
- Urban Hydrology

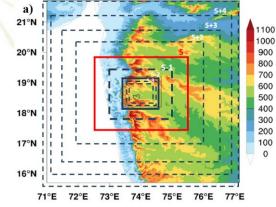
Operations

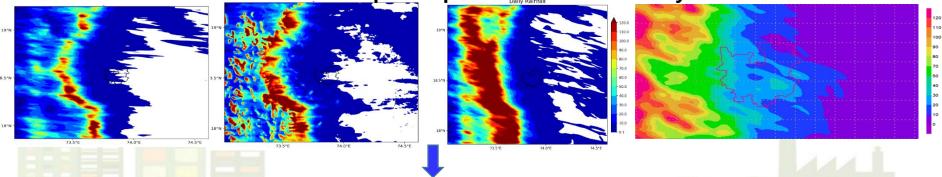
- Data Service Cloud
- Model Cloud
- Policy Reports
- Dissemination





Domain Sensitivity Experiments




Step 1: Fixed Monsoon and Indian domain

Step 2: multiple domain creation for Pune city

Sample outputs: domain sensitivity

Domain size and location played important roles for cities with complex topography

Kirkwood et al., 2021

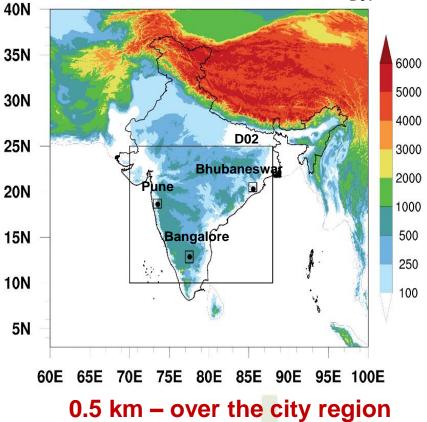
Physics Sensitivity

THE REPORT	

Simulation Number	PBL	Land Surface	Cumulus	Micro-physics
1	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	No CU	Kessler Scheme
2	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	No CU	WRF Single-moment 6-class Schem
3	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	No CU	Thompson Scheme
4	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	No CU	Ferrier (Eta) Scheme
5	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	No CU	Goddard Scheme
6	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	Kain-Fritsch Scheme	Kessler Scheme
7	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	Kain–Fritsch Scheme	WRF Single-moment 6-class Schem
8	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	Kain–Fritsch Scheme	Thompson Scheme
9	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	Kain-Fritsch Scheme	Ferrier (Eta) Scheme
10	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	Kain–Fritsch Scheme	Goddard Scheme
11	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	Betts-Miller-Janjic (BMJ)	Kessler Scheme
12	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	Betts-Miller-Janjic (BMJ)	WRF Single-moment 6-class Schem
13	Mellor-Yamada-Janjic Scheme (MYJ	Unified Noah Land Surface Mode	Betts-Miller-Janjic (BMJ)	Thompson Scheme
14	Mellor-Yamada-Janjic Scheme (MYJ			Ferrier (Eta) Scheme
15	Mellor-Yamada-Janjic Scheme (MYJ		• • •	Goddard Scheme
16	Mellor-Yamada-Janjic Scheme (MYJ			Kessler Scheme
17	Mellor-Yamada-Janjic Scheme (MYJ			
18	Mellor-Yamada-Janjic Scheme (MYJ			
19	Mellor-Yamada-Janjic Scheme (MYJ			
20	Mellor-Yamada-Janjic Scheme (MYJ			
20	Mellor-Yamada-Janjic Scheme (MYJ			Kessler Scheme
22	Mellor-Yamada-Janjic Scheme (MYJ			WRF Single-moment 6-class Schem
22	Mellor-Yamada-Janjic Scheme (MYJ			Thompson Scheme
23	Mellor-Yamada-Janjic Scheme (MYJ			Ferrier (Eta) Scheme
24	Mellor-Yamada-Janjic Scheme (MYJ			Goddard Scheme
25				Kessler Scheme
26	Mellor-Yamada-Janjic Scheme (MYJ			WRF Single-moment 6-class Schem
	Mellor-Yamada-Janjic Scheme (MYJ			
28	Mellor-Yamada-Janjic Scheme (MYJ			Thompson Scheme
29	Mellor-Yamada-Janjic Scheme (MYJ			Ferrier (Eta) Scheme
30	Mellor-Yamada-Janjic Scheme (MYJ			Goddard Scheme
31	Mellor-Yamada-Janjic Scheme (MYJ			Kessler Scheme
32	Mellor-Yamada-Janjic Scheme (MYJ			WRF Single-moment 6-class Schem
33	Mellor-Yamada-Janjic Scheme (MYJ		• • •	Thompson Scheme
34	Mellor-Yamada-Janjic Scheme (MYJ			Ferrier (Eta) Scheme
35	Mellor–Yamada–Janjic Scheme (MYJ		Betts-Miller-Janjic (BMJ)	Goddard Scheme
36	Mellor–Yamada–Janjic Scheme (MYJ		Multi-scale Kain-Fritsch Schen	
37	Mellor-Yamada-Janjic Scheme (MYJ			WRF Single-moment 6-class Schem
38	Mellor-Yamada-Janjic Scheme (MYJ	Noah-MP Land Surface Model	Multi-scale Kain-Fritsch Schen	Thompson Scheme
39	Mellor-Yamada-Janjic Scheme (MYJ			
40	Mellor-Yamada-Janjic Scheme (MYJ	Noah-MP Land Surface Model	Multi-scale Kain-Fritsch Schen	Goddard Scheme
41	Bougeault-Lacarrère (BouLac)	Unified Noah Land Surface Mode	No CU	Kessler Scheme
42	Bougeault-Lacarrère (BouLac)	Unified Noah Land Surface Mode	No CU	WRF Single-moment 6-class Schem
43	Bougeault-Lacarrère (BouLac)	Unified Noah Land Surface Mode	No CU	Thompson Scheme
44	Bougeault-Lacarrère (BouLac)	Unified Noah Land Surface Mode	No CU	Ferrier (Eta) Scheme
45		Unified Noah Land Surface Mode	No CU	Goddard Scheme

Extensive sensitivity analysis is required for high-resolution simulations

Model Configurations

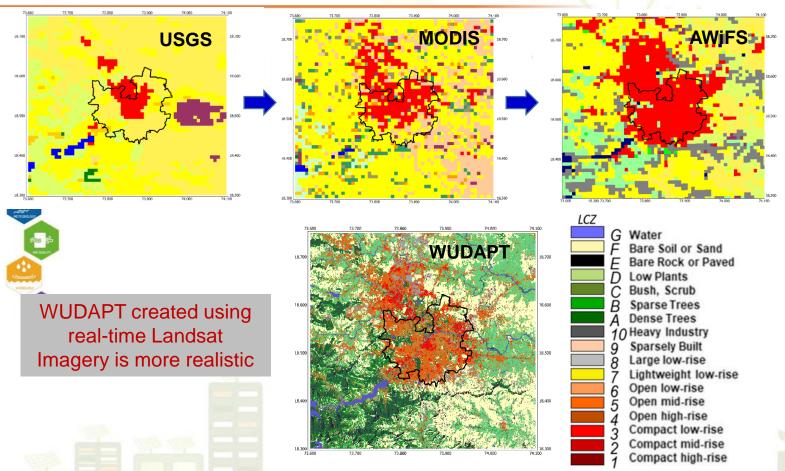


D01

Experimental setup

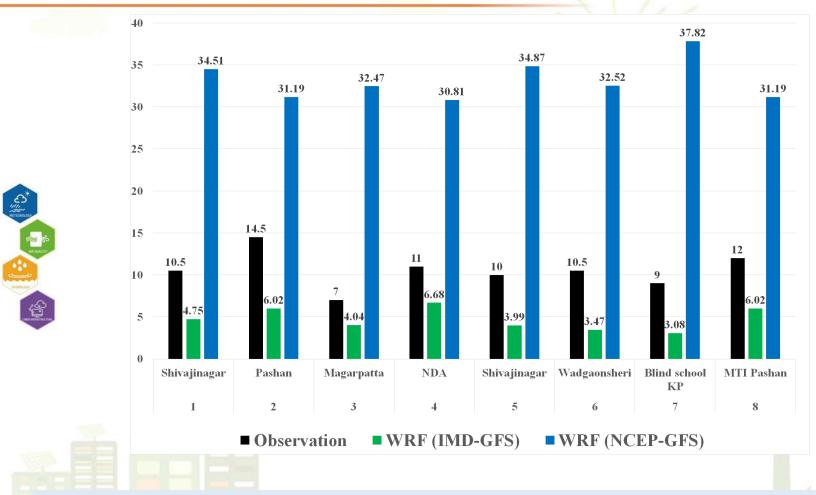
Initial and boundary data	NCEP GFS 0.25° , IMD-GFS 0.25°
Resolution	4.5 × 1.5 km and
	4.5 × 1.5 × 0.5 km
	9 x 3 x 1 km
Horizontal grid system	Arakawa-C grid
Vertical layers (Ptop)	45 sigma levels
Time integration scheme	3 rd order Runge-kutta scheme
Spatial	6 th order center differencing
differencing scheme	
Microphysics	WRF Single-Moment 6-class scheme (WSM6)
Radiation scheme	RRTM longwave
	Goddard shortwave radiation
PBL parameterization	Bougeault–Lacarrere Scheme (BouLac)

4.5 x 1.5 x 0.5 km


Similar approach can be followed for setup of model for any city

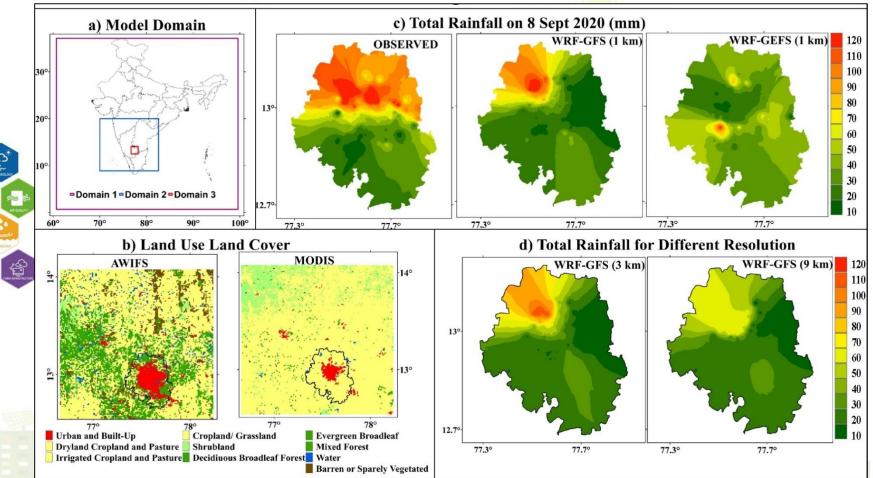
City-specific LULC Ingestion

The use of WUDAPT LCZ and the UCM improved the forecast skill


The high resolution of LULC increases the computational cost by 15-25%, depending on the no. of nested domains (may not be suitable for daily forecast)

Choose : IC/BC

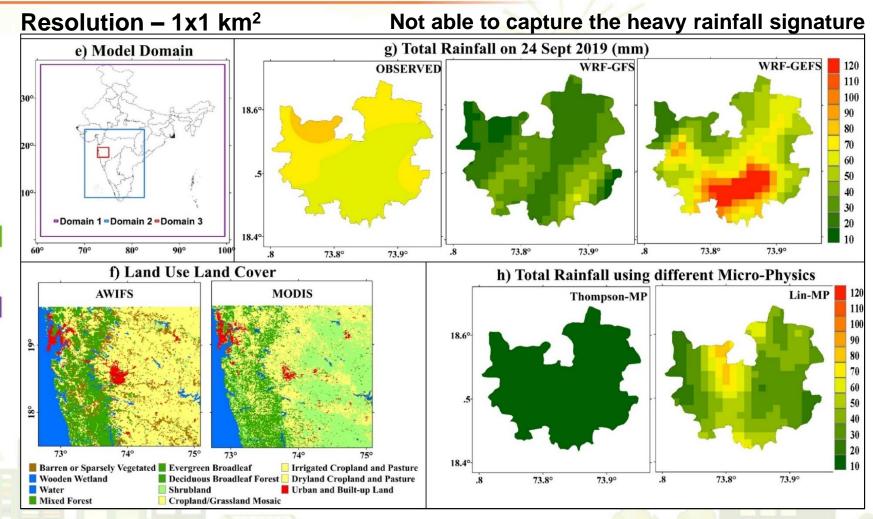
IMD GFS data improved the rainfall forecast over Pune than NCEP



Bangalore Heavy Rainfall Simulation 8-9 Sept 2020

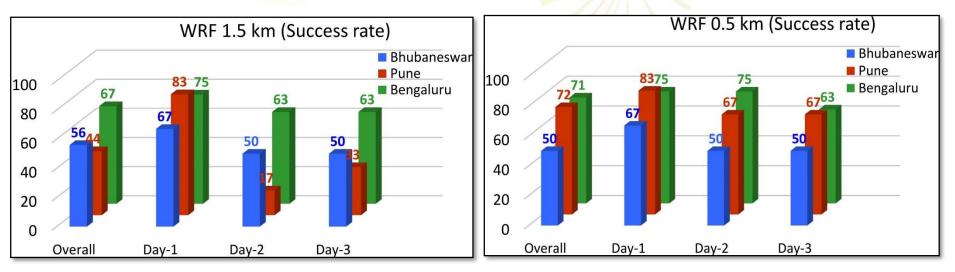
Resolution – 1x1 km²

Significance: 1-km domain is able to capture the heavy rainfall signature



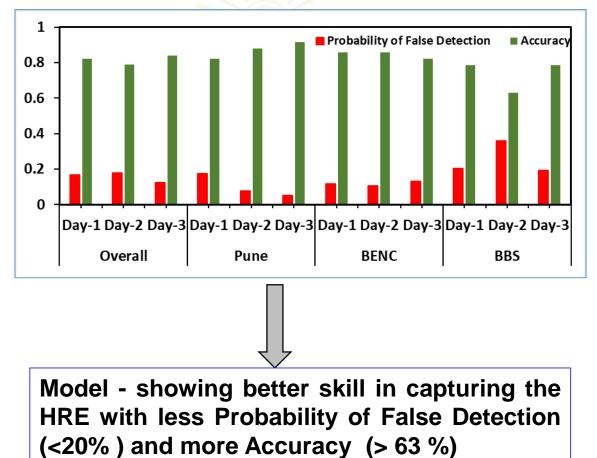
皆

Pune Heavy Rainfall Simulation 24 Sept 2019


The impact of urbanization on extreme rainfall is nonuniform and highlights the need for continued robust analysis

Model Success Rate in percentage (%)

- Significant improvement in the overall "Success Rates" using 0.5 km than to 1.5 km
- Improvement more prominent over Pune

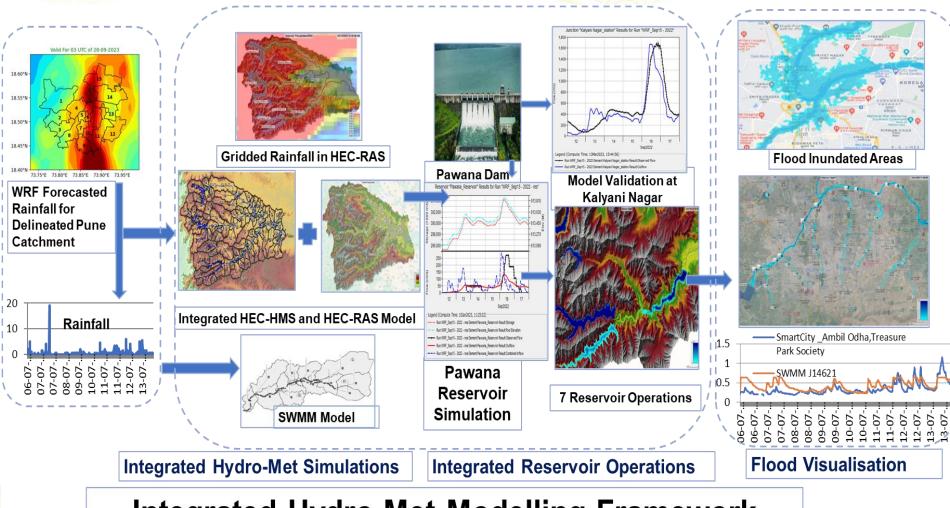

Possibly better representation of local scale processes/features leads to improvement in the urban scale simulation

Categorical skill scores: Monsoon -2022

HRE-2022Probability of detectionProbability of false detectionDay-10.8210.6670.167Day-20.7900.3890.179Day-30.8410.3890.124PUNEAccuracyProbability of detectionProbability of false detection*Day-10.8210.7500.175Day-20.8810.0000.175Day-30.9170.2500.050BENCAccuracyProbability of detectionProbability of false detectionBENCAccuracy0.02500.118Day-30.8570.6250.105Day-30.8570.5000.105Day-30.8210.3750.132
Day-1 0.821 0.667 0.167 Day-2 0.790 0.389 0.179 Day-3 0.841 0.389 0.124 Pay-3 0.841 0.389 0.124 Pune Accuracy Probability of detection Probability of false detection *Day-1 0.821 0.750 0.175 Day-2 0.881 0.000 0.075 Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection Probability 0.175 BENC Accuracy Probability of detection Probability 0.1050 BENC Accuracy 0.625 0.118 Bay-1 0.857 0.500 0.105
Day-2 0.790 0.389 0.179 Day-3 0.841 0.389 0.124 PUNE Accuracy Probability of detection Probability false detection *Day-1 0.821 0.750 0.175 Day-2 0.881 0.000 0.0750 Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection Probability 0.250 Probability 0.175 BENC Accuracy Probability of detection Probability 0.1050 Probability 0.118 BENC 0.857 0.500 0.105 0.105
Day-3 0.841 0.389 0.124 PUNE Accuracy Probability of detection Probability false detection *Day-1 0.821 0.750 0.175 Day-2 0.881 0.000 0.075 Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection Probability 0.175 BENC Accuracy Probability of detection Probability 0.105 BENC Accuracy 0.625 0.118 Day-2 0.857 0.500 0.105
PUNE Accuracy Probability of detection Probability of false detection *Day-1 0.821 0.750 0.175 Day-2 0.881 0.000 0.0750 Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection Probability of false detection *Day-3 0.917 0.250 0.075 Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection False detection *Day-1 0.857 0.625 0.118 Day-2 0.857 0.500 0.105
PUNE Accuracy of detection false detection *Day-1 0.821 0.750 0.175 Day-2 0.881 0.000 0.075 Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection Probability false detection *Day-1 0.857 0.625 0.118
PUNE Accuracy of detection false detection *Day-1 0.821 0.750 0.175 Day-2 0.881 0.000 0.075 Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection Probability false detection *Day-1 0.857 0.625 0.118
Day-2 0.881 0.000 0.075 Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection Probability of false detection *Day-1 0.857 0.625 0.118 Day-2 0.857 0.500 0.105
Day-3 0.917 0.250 0.050 BENC Accuracy Probability of detection Probability false detection *Day-1 0.857 0.625 0.118 Day-2 0.857 0.500 0.105
BENCAccuracyProbability of detectionProbability of false detection*Day-10.8570.6250.118Day-20.8570.5000.105
BENCAccuracyProbability of detectionProbability of false detection*Day-10.8570.6250.118Day-20.8570.5000.105
BENC Accuracy of detection false detection *Day-1 0.857 0.625 0.118 Day-2 0.857 0.500 0.105
*Day-1 0.857 0.625 0.118 Day-2 0.857 0.500 0.105
Day-2 0.857 0.500 0.105
Day-3 0.821 0.375 0.132
Probability Probability of
BBS Accuracy of detection false detection
*Day-1 0.786 0.667 0.205
Day-2 0.631 0.500 0.359
Day-3 0.786 0.500 0.192

🐑 🎎 🌢 🧭 👌

- WRF setup able to capture the Heavy rainfall at city scale
- WRF 0.5 km greater skill than 1.5 km (~ 10-20%)
- The city scale prediction skill of WRF (1.5 km & 0.5 km) significantly higher than the driving GFS IC/BC
- Model stable, giving good indication of occurrence and nonoccurrence (Success rate >63%, False alarm <20%)

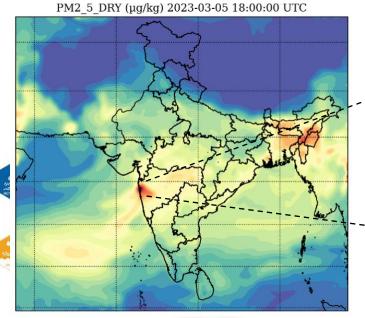


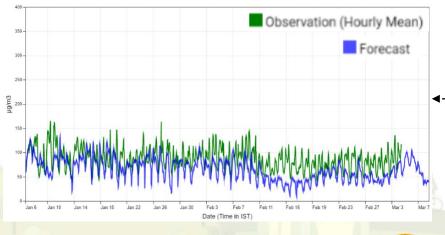
Urban Flood Forecasting

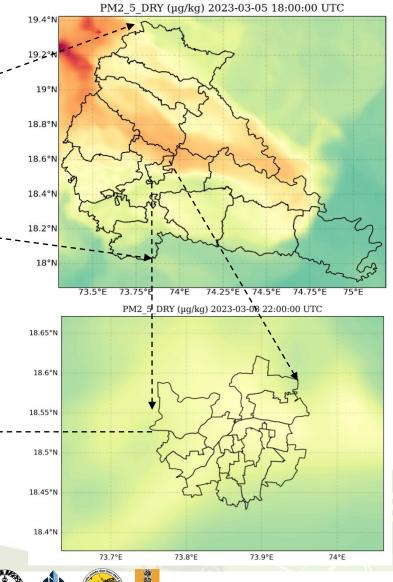
Integrated Hydro-Met Modelling Framework

Pune: 17 Oct 2022 Flood Simulation

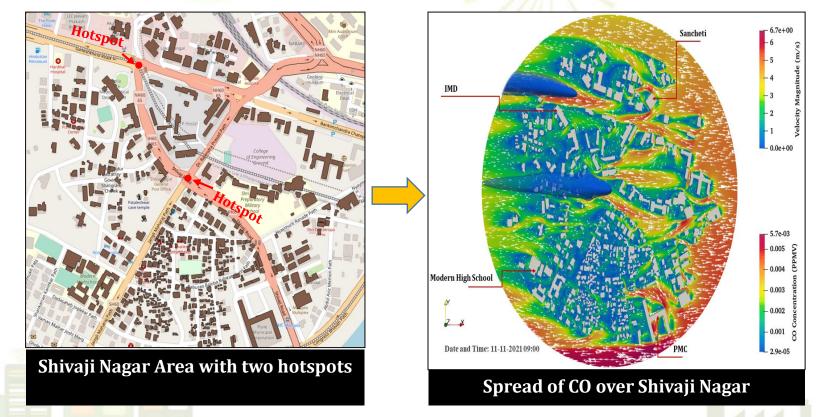
Towards 3D Digital Twins


Pune Air Quality Early Warning System


- 91


- 16

Hourly Forecast Verification PM_{2.5}

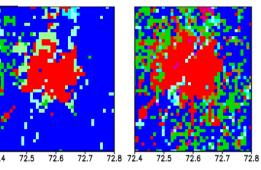


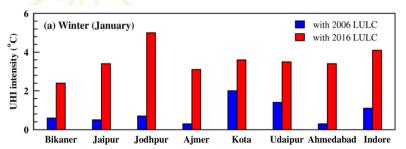
Pollutant Dispersion

Coupled WRF-Chem and OpenFOAM (CFD) modeling set-up for microlevel dispersion of pollutants over pollution hotspot

CFD Model took ~36 hours of computing time for 1-day simulation (resolution 10-m) for single pollutant (with 20 nodes; 960 cores)

Urban Heat Island


Urban Heat Island: Impact of Urbanization


<u>Objective:</u> To quantify the impact of urbanization on surface meteorology and UHI over major urban cities in NE India

- 1. Ahmedabad
- 2. Bikaner
- 3. Jaipur
- 4. Indore
- 5. Ajmer 6. Kota 7. Udaipur 8. Jodhpur

Ahmedabad LULC 2006 vs 2016

UHI intensity: Impact of urbanization

Outcome:

 A significant increase in near-surface temperature is observed

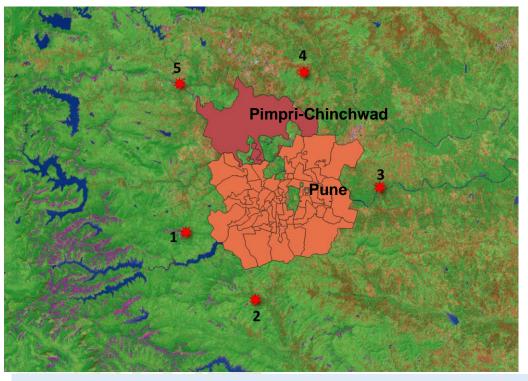
23.2

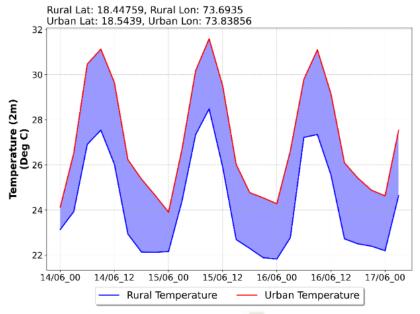
23.1

23

22.9

- Area of higher temperature zones has increased due to urban expansion
- Night-time averaged UHI has increased over all the cities



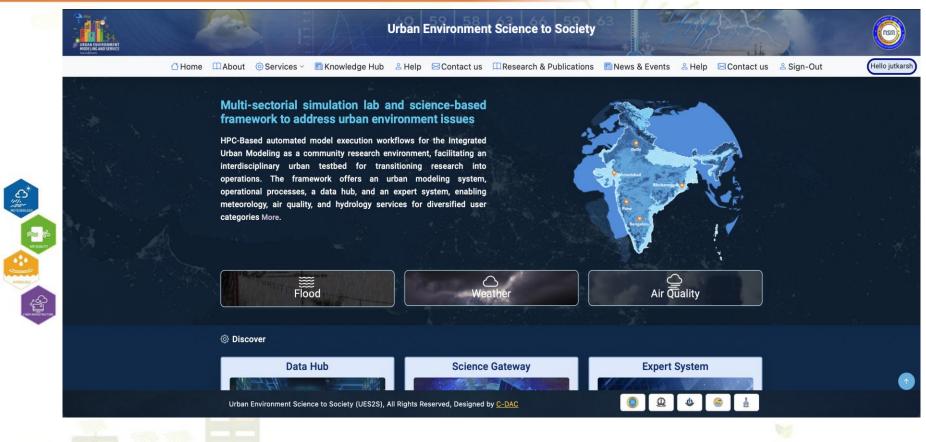

Urban Heat Island

Criteria for Identification of Rural Location

- 1. NDVI > 0.5
- 2. Rural area > 5 km & < 10 km from city boundary

Urban area is the city center

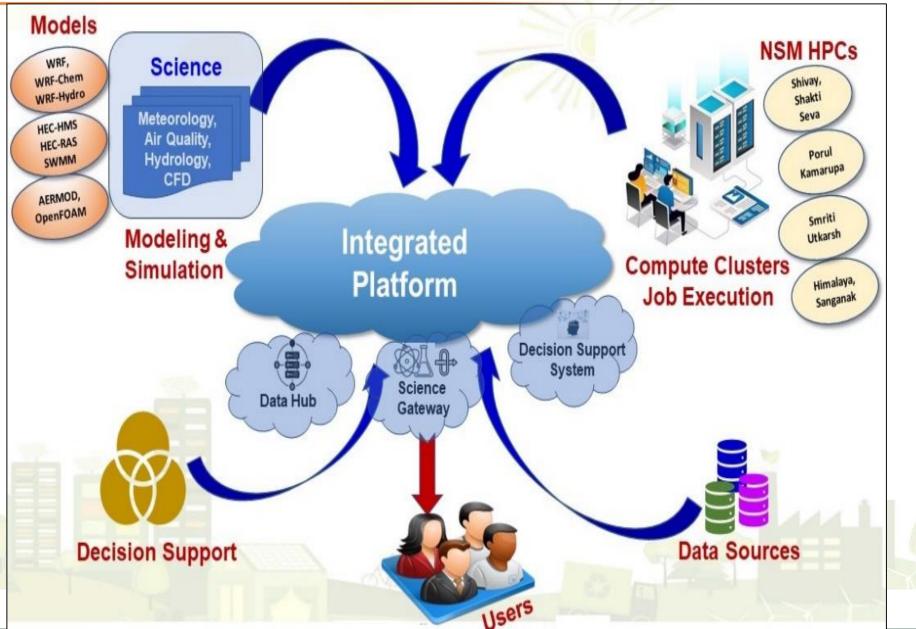
Rural area - as the location where the temperature difference is maximum


- knowledge of Linux/Unix system
- To know Compilers
- Libraries/model installation on Linux environment
- Data handling
- Visualization of the outputs

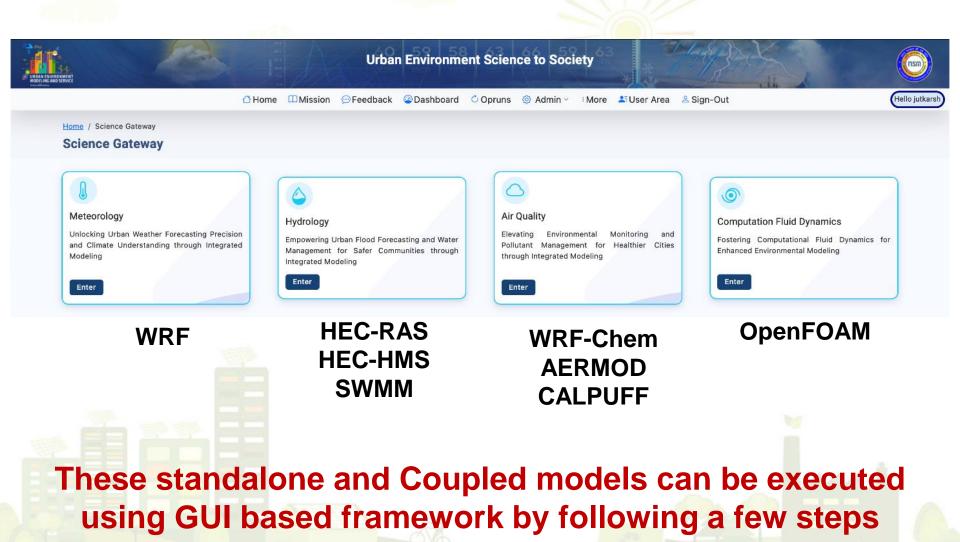
Web-based - Integrated System

Integrated platform for

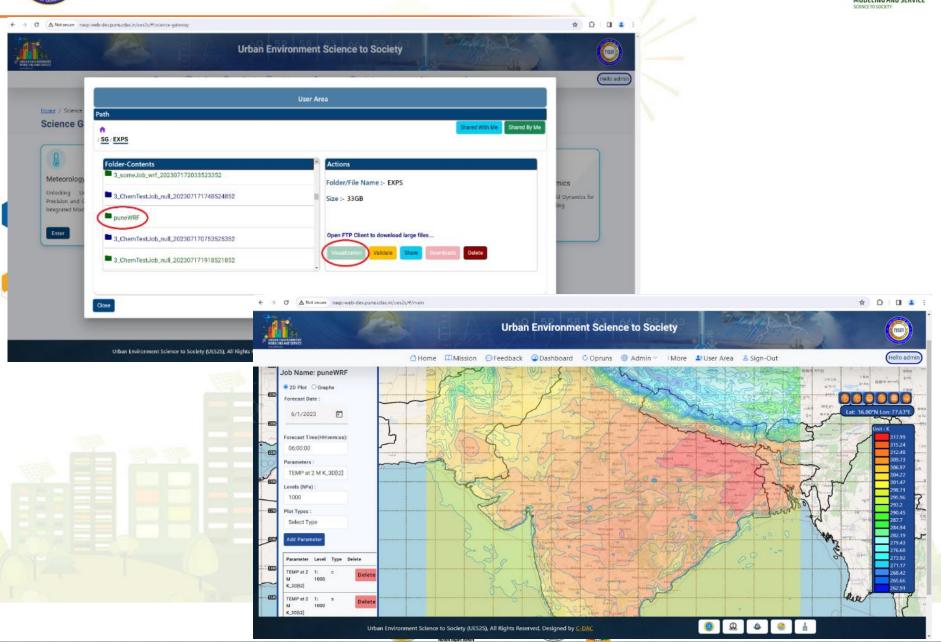
- Data Accusation
- Modeling and Simulation
- Postprocessing


- Visualization of products
- Decision Support System

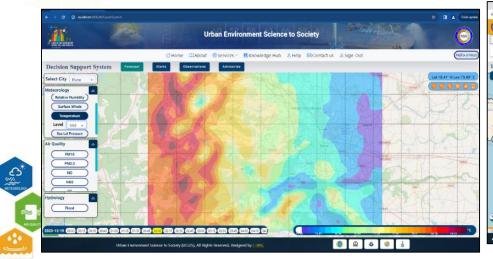
Automated Model framework

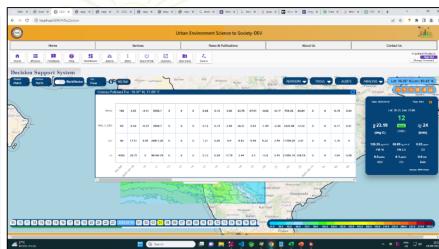


GUI-based Automated Model Execution

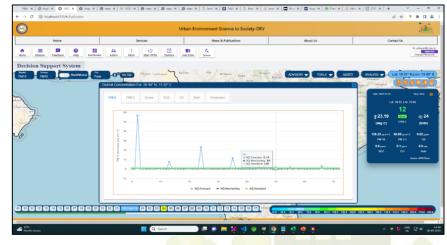


Model Output Visualization



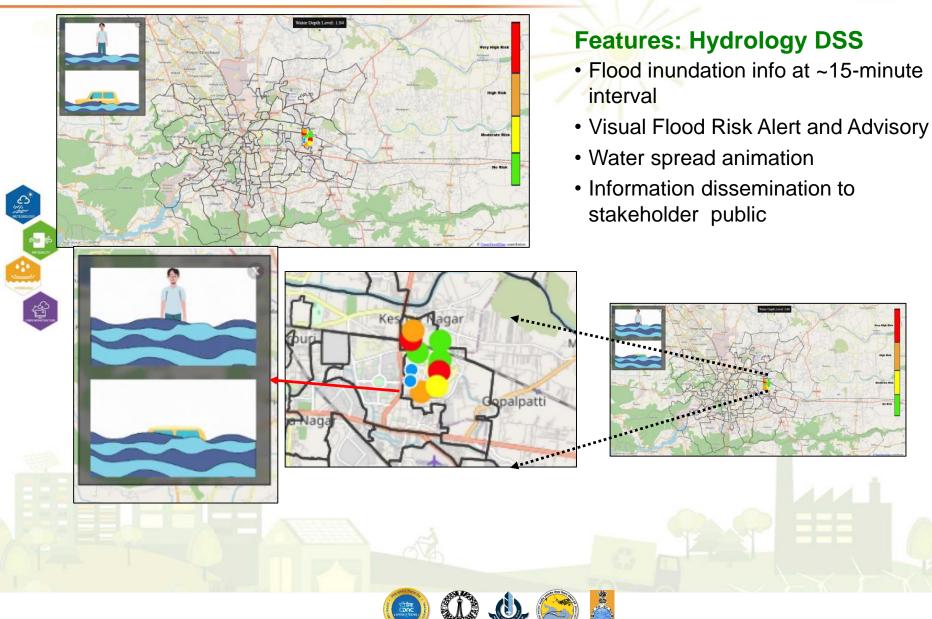


Integrated Decision Support System

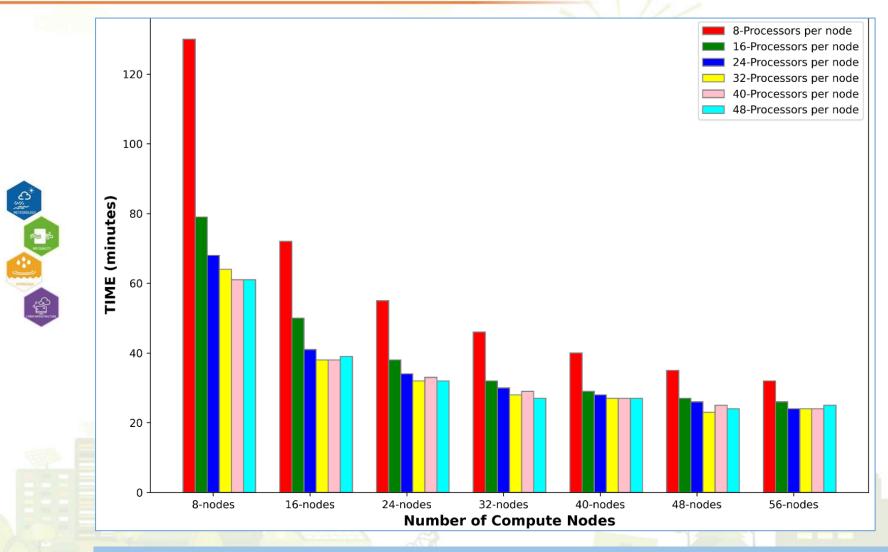


Features: MET & AQ

- Weather and Air Quality hourly forecast
- Ward wise forecast products
- Alerts Heavy rainfall, thunderstorms, high AQI
- Heatwave alerts, advisory
- Scenarios generation
- User role-based functionality
- Information dissemination to stakeholders & public



Integrated Decision Support System



Computational Optimization

Model Optimization: Computational

WRF: Identify the optimal no. of nodes daily simulation

WRF Model Optimization

Compute Node optimization:

Nodes (cores)	Time for WRF run in minutes
10 (480)	705
20 (960)	410
30 (1440)	267
40 (1920)	252

Simulation time optimization:

- a. GFS data downloading
- b. WRF model run I/O limitation, and model integration time step
- c. Time reduction in post-processing using ARWpost in parallel mode

HPC System (Param Smriti)	Total Core	GFS Data Downloading	Pre- processing Time	Time for wrf.exe	Post- Processing Time	Total Time
Before Optimization	1440	35 m	42m	267m	28 m	372 m
After Optimization	1440	2m	32	210 m	1 m	245m

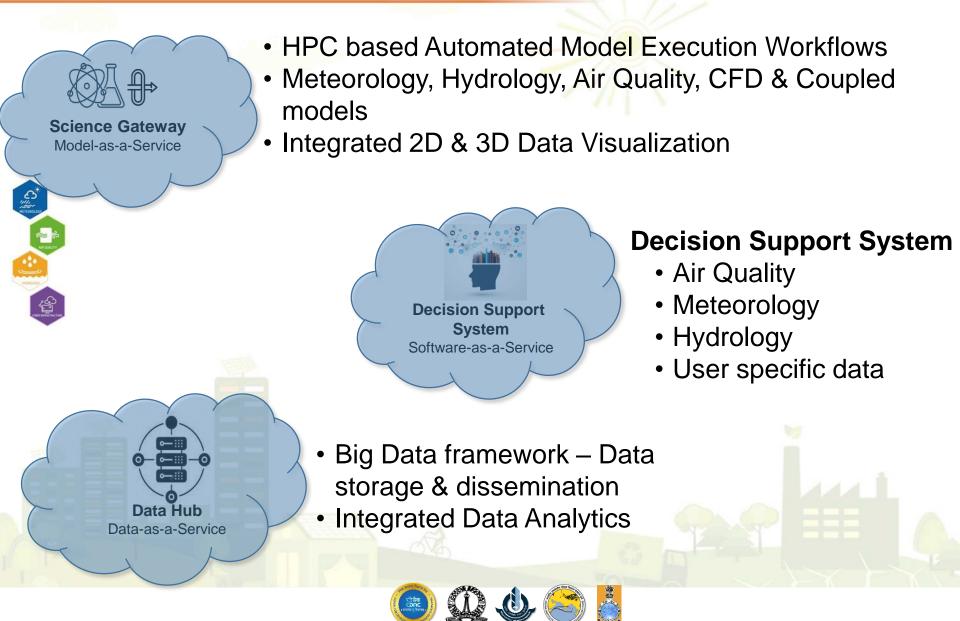
WRF Model Optimization: Ensemble

SI. No.	PBL	LSM	Cumulus	Microphysics
EnsMember-1	BouLac	Unified Noah LSM	No Cu	WSM-6
(EM1)				
EM2	BouLac	Unified NoaH	No Cu	Lin
EM3	BouLac	Unified NoaH	No Cu	Ferrier
EM4	BouLac	Noah – MP LSM	KF	Ferrier

Ensemble	No. of cores	Time taken (minutes)	Output storage
EM1	1920 (40 Nodes)	11.6 hours	173 GB
EM2	1920	11.6 hours	163 GB
EM3	1920	11.6 hours	173 GB
EM4	1920	11.6 hours	170 GB

Identified the complexities of running the ensemble runs

Urban Modeling – Challenges/Solutions


- Challenges to define a multidisciplinary approach, combining advanced modeling techniques, comprehensive data collection, and collaboration between multi-institutes – Collaborative System in place
- Data Acquisition: Gathering detailed and accurate data for urban areas, essential for model validation – Developed DataHub
 - Computational Barriers: The computational demands of urban modeling, especially when using a CFD model - Ongoing
 - Model Structural Uncertainty: Significant uncertainty in the structural aspects of models when simulating urban rainfall Working further
 - Urban planners, and policymakers to improve the accuracy and utility of urban scale modeling – DSS developed

Cloud Services

User-friendly interface for weather, hydrology, and air quality modeling for research and operational

Automatic model framework:

- A user-friendly multi-modeling platform
- The researcher should focus on the science part only ...rest should be taken care

DataHub: database management

- Single source for all model-related data from different sources in one place
- Easy-to-use search/view/download options

Validation and verification tools:

- Useful to cross-check forecast quality against observations
- Easy-to-use tool for model verification and validation
- All basic and advanced statistical parameters at one place

DSS:

- Identify various critical factors, hots spots, possibility of weather related events
- Define methods and rules for the implementation of the assessment
- Analyse the impact of actions

Visualization: 2D/3D

A User-friendly platform to select and visualise any parameters in the required way

Capacity Building: Modeling and Simulation

- WRF Training: Along with SAMA for South Asian countries April 2023 (online; 120+ participants)
- Applications oriented training school conducted at C-DAC Pune (21-25 Aug 2023) (offline; 44 participants)
 - There were 44 participants from across the country 25 Institutes across India
 - o Expert lectures taken by C-DAC Pune, IMD, IITM, NIT, and industry scientists
 - Practical Session conducted Basic to Advanced level

Applications Oriented School on WRF Modeling System

August 21-25, 2023

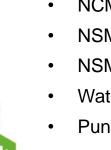
About WRF

The Weather Research and Forecasting (WRF) Model is a next-generation weather prediction model whttps://www.mmucaredumdefk/wrf) used carcos she workfor research and operational needs. The model serves a wide range of meteorological applications across scales ranging from meters to thousands of kilometers. WRF enables researchers to produce simulations reflecting either real data (observations, analyzes) or idealized atmospheric conditions useful fordecisions in agriculture, energy (Mod arg audity insurance, etc.

Background of the School

The VMF model is in high demand among scademic scholars and government bodies that run operations. However, the model is reliant to parallel processing expertise and dewours significant HPC resources. The capacity buildings chool will introduce the participants to the underlying parallel processing concepts, understand scientific configurations, and provide hands on training on WHF execution an HPC. The school will consist of feetures by experts on WHF modeling.

NSM - PARAM Utkarsh HPC - Login given


Acknowledgement

Thank you

- India Meteorological Department (IMD)
- National Data Centre, IMD Pune
- NCMRWF IMDAA and NCUM data
- NSM (MeitY)
- NSM HPC resources
- Water Resource Department Govt. of Maharashtra
- Pune Municipal Corporation and Pune Smart City
- Karnataka State Natural Disaster Monitoring Centre (KSNDMC)
- Bruhat Bengaluru Mahanagara Palike (BBMP)
- Bangalore Development Authority (BDA)
- Central Pollution Control Board (CPCB)
- Environmental Science Department, SPPU, Pune
- Smart City administrations (IUDX data)
- Orissa State Pollution Control Board (OSPCB)
- Commission for Air Quality Management

